Six friends will exchange books in their book club. Each friend has one book to give
to a friend, and will receive one book from a different friend. (No two friends trade
books with each other.) In how many ways can the books be exchanged?
A math question
所有跟帖:
•
Can wait jinjing, but not an easy one
-Slowguy-
♂
(41 bytes)
()
05/03/2012 postreply
21:56:32
•
I think C(6,3)*2*2+6!/6=200..
-jinjing-
♀
(0 bytes)
()
05/04/2012 postreply
06:17:44
•
回复:I think C(6,3)*2*2+6!/6=200..
-slowguy-
♂
(50 bytes)
()
05/04/2012 postreply
06:25:34
•
Yes, I think C(6,3)*2*2+6!/6=200..
-jinjing-
♀
(320 bytes)
()
05/04/2012 postreply
07:07:28
•
回复:Yes, I think C(6,3)*2*2+6!/6=200..
-Slowguy-
♂
(871 bytes)
()
05/04/2012 postreply
07:59:37
•
回复:回复:Yes, I think C(6,3)*2*2+6!/6=200..
-jinjing-
♀
(360 bytes)
()
05/04/2012 postreply
08:56:10
•
Still not convinced
-Slowguy-
♂
(162 bytes)
()
05/04/2012 postreply
09:06:41
•
You are right, should be C(6,3)/2*2*2 + 6!/6=160. two parts 10 c
-jinjing-
♀
(96 bytes)
()
05/04/2012 postreply
10:35:30
•
Thanks
-Slowguy-
♂
(0 bytes)
()
05/04/2012 postreply
10:50:22
•
Yes, Slowguy is right
-万斤油-
♂
(0 bytes)
()
05/04/2012 postreply
11:15:16
•
If two people can exchange each other.the answer is 265 cases.
-jinjing-
♀
(0 bytes)
()
05/04/2012 postreply
10:57:58
•
If the total people is 7, what is the number of 3+4 part? Is any
-wxcfan123-
♂
(0 bytes)
()
05/05/2012 postreply
08:08:56
•
回复:If the total people is 7, what is the number of 3+4 part? Is
-jinjing-
♀
(120 bytes)
()
05/05/2012 postreply
10:04:16
•
thanks. So the general solution should be
-wxcfan123-
♂
(416 bytes)
()
05/06/2012 postreply
08:28:32
•
F(N) = SUM_(n1 + n2 + ... nk=N, ni >=3 ) {[C(N, n1)C(N-n1,n2)..
-jinjing-
♀
(66 bytes)
()
05/06/2012 postreply
09:37:01
•
... {[C(N, n1)C(N-n1,n2)..C(N-n1-n2-...n(k-1,nk)/D(n1,n2m,,,nk)]
-jinjing-
♀
(0 bytes)
()
05/06/2012 postreply
09:41:59