设AB = X。 由勾股定理,并化简
BC^2 =X^2 + 2X*sqrt(10^2 - X^2) + 10^2 = f(X)0 < X < 10
求导,得方程
2X + 2sqrt(100 - X^2) - 2X^2/sqrt(100 - X^2) = 0
去分母得方程
X*sqrt(100-X^2) = 2X^2 - 100.
平方得方程
X^2(100-x^2) = 4X^4 - 400X^2 + 10000
化简得
X^4 - 100X^2 + 2000 = 0,
可得两个极值点,X^2 = 50 +/- 10sqrt(5)
f( sqrt(50+10sqrt(5)) ) = 150 + 50sqrt(5)
f( sqrt(50 -10 sqrt(5)) ) = 250 + 10sqrt(5)
f(0) = 100, f(10) = 200
BC 的最大值是 sqrt( 250 + 10sqrt(5) )