先由韦达定理易证 |b|<4, 考虑x在区间(-2,2)内, 令f(x)=-ax-b=x^2<4,
当a>=0时, max(f(x))=2a-b<4, 当a<0时, max(f(x))=-2a-b<4, 总之 2|a|-b<4, 即2|a|<4+b
先由韦达定理易证 |b|<4, 考虑x在区间(-2,2)内, 令f(x)=-ax-b=x^2<4,
当a>=0时, max(f(x))=2a-b<4, 当a<0时, max(f(x))=-2a-b<4, 总之 2|a|-b<4, 即2|a|<4+b
WENXUECITY.COM does not represent or guarantee the truthfulness, accuracy, or reliability of any of communications posted by other users.
Copyright ©1998-2025 wenxuecity.com All rights reserved. Privacy Statement & Terms of Use & User Privacy Protection Policy