我是搞心脏的,受到的教育告诉我可以使用一定量的硫化氢预防和减轻心肌的损害。请参考如下193篇文献。

来源: 御用文人 2015-07-19 17:10:12 [] [旧帖] [给我悄悄话] 本文已被阅读: 次 (45007 bytes)
Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter

John L. Wallace & Rui Wang
AffiliationsCorresponding author
Nature Reviews Drug Discovery 14, 329–345 (2015) doi:10.1038/nrd4433
Published online 07 April 2015
Article tools
Full text
PDF
Citation
Reprints
Rights & permissions
Article metrics
Abstract
Abstract? References? Author information
Hydrogen sulfide (H2S) has become recognized as an important signalling molecule throughout the body, contributing to many physiological and pathological processes. In recent years, improved methods for measuring H2S levels and the availability of a wider range of H2S donors and more selective inhibitors of H2S synthesis have helped to more accurately identify the many biological effects of this highly reactive gaseous mediator. Animal studies of several H2S-releasing drugs have demonstrated considerable promise for the safe treatment of a wide range of disorders. Several such drugs are now in clinical trials.

View full text

At a glance
Figures
First | 1-3 of 3 | Last
View all figures
left
Cytosolic and mitochondrial production and functions of H2S.
Figure 1
The pathogenic roles of H2S at different stages of diabetes development.
Figure 2
Anti-inflammatory and cytoprotective targets of H2S.
Figure 3
right
References
Abstract? References? Author information
Wang, R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 16, 1792–1798 (2002).
This study conceptualizes gasotransmitters as a class of signalling molecules and proposes the importance of H2S in this context.
CASISIPubMedArticle
Kimura, H., Shibuya, N. & Kimura, Y. Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid. Redox Signal. 17, 45–57 (2012).
CASISIPubMedArticle
Olson, K. R., Donald, J. A., Dombkowski, R. A. & Perry, S. F. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir. Physiol. Neurobiol. 184, 117–129 (2012).
CASPubMedArticle
Yamanishi, M., Kabil, O., Sen, S. & Banerjee, R. Structural insights into pathogenic mutations in heme-dependent cystathionine-β-synthase. J. Inorg. Biochem. 100, 1988–1995 (2006).
CASISIPubMedArticle
Teng, H. et al. Oxygen-sensitive mitochondrial accumulation of cystathionine β synthase mediated by Lon protease. Proc. Natl Acad. Sci. USA 110, 12679–12684 (2013).
PubMedArticle
Wang, R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92, 791–896 (2012).
CASISIPubMedArticle
Nagahara, N., Okazaki, T. & Nishino, T. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J. Biol. Chem. 270, 16230–16235 (1995).
CASISIPubMedArticle
Yang, G., Cao, K. & Wang, R. Cystathionine γ-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK 1. J. Biol. Chem. 279, 49199–49205 (2004).
CASISIPubMedArticle
Caliendo, G., Cirino, G., Santagada, V. & Wallace, J. L. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem. 53, 6275–6286 (2010).
CASISIPubMedArticle
Levitt, M. D., Abdel-Rehim, M. S. & Furne, J. Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid. Redox Signal. 15, 373–378 (2011).
CASISIPubMedArticle
Insko, M. A., Deckwerth, T. L., Hill, P., Toombs, C. F. & Szabo, C. Detection of exhaled hydrogen sulphide gas in rats exposed to intravenous sodium sulphide. Br. J. Pharmacol. 157, 944–951 (2009).
CASISIPubMedArticle
Hosoki, R., Matsiki, N. & Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 237, 527–531 (1997).
This is an original description of the vasorelaxant effects of H2S.
CASISIPubMedArticle
Zhao, W., Zhang, J., Lu, Y. & Wang, R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 20, 6008–6016 (2001).
This study describes the first cloning of CSE in vascular tissues and the identification of KATP channels as the molecular target of endogenous H2S for its vasorelaxant effects.
CASISIPubMedArticle
Yang, G. et al. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal. 18, 1906–1919 (2013).
CASISIPubMedArticle
Zhang, G., Wang, P., Yang, G., Cao, Q. & Wang, R. The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am. J. Pathol. 182, 1188–1195 (2013).
CASISIPubMedArticle
Fiorucci, S., Distrutti, E., Cirino, G. & Wallace, J. L. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 131, 259–271 (2006).
CASISIPubMedArticle
Schicho, R. et al. Hydrogen sulfide is a novel prosecretory neuromodulator in the guinea-pig and human colon. Gastroenterology 131, 1542–1552 (2006).
CASISIPubMedArticle
Wallace, J. L., Vong, L., McKnight, W., Dicay, M. & Martin, G. R. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137, 569–578 (2009).
CASISIPubMedArticle
Martin, G. R. et al. Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Dig. Liver Dis. 42, 103–109 (2010).
CASISIPubMedArticle
Erickson, P. F., Maxwell, I. H., Su, L. J., Baumann, M. & Glode, L. M. Sequence of cDNA for rat cystathionine γ-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem. J. 269, 335–340 (1990).
CASISIPubMed
Paul, B. D. et al. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease. Nature 509, 96–100 (2014).
CASISIPubMedArticle
Abe, K. & Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071 (1996).
CASISIPubMed
Robert, K. et al. Expression of the cystathionine β synthase (CBS) gene during mouse development and immunolocalization in adult brain. J. Histochem. Cytochem. 51, 363–371 (2003).
CASISIPubMedArticle
Mani, S., Untereiner, A., Wu, L. & Wang, R. Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid. Redox Signal. 20, 805–817 (2014).
CASISIPubMedArticle
Chen, Y. & Wang, R. The message in the air: hydrogen sulfide metabolism in chronic respiratory diseases. Resp. Physiol. Neurobiol. 184, 130–138 (2012).
CASArticle
Szabo, C. et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl Acad. Sci. USA 110, 12474–12479 (2013).
PubMedArticle
Kondo, K. et al. H2S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 12, 1116–1127 (2013).
CASArticle
Fu, M., Zhang, W., Yang, G. & Wang, R. Is cystathionine γ-lyase protein expressed in the heart? Biochem. Biophys. Res. Commun. 428, 469–474 (2012).
CASISIPubMedArticle
Nagahara, N., Ito, T., Kitamura, H. & Nishino, T. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem. Cell. Biol. 110, 243–250 (1998).
CASPubMedArticle
Shibuya, N. et al. 3-mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 11, 703–714 (2009).
CASISIPubMedArticle
Shibuya, N., Mikami, Y., Kimura, Y., Nagahara, N. & Kimura, H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem. 146, 623–626 (2009).
CASISIPubMedArticle
Módis, K., Panopoulos, P., Coletta, C., Papapetropoulos, A. & Szabo, C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem. Pharmacol. 86, 1311–1309 (2013).
CASISIPubMedArticle
Fu, M. et al. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl Acad. Sci. USA 109, 2943–2948 (2012).
This study shows that increases in intracellular calcium promote translocation of CSE to the mitochondrion, leading to increased mitochondrial H2S production and improved ATP production under hypoxic conditions.
PubMedArticle
Tang, G., Wu, L., Liang, W. & Wang, R. Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol. Pharmacol. 68, 1757–1764 (2005).
CASISIPubMed
Yang, W., Yang, G., Jia, X., Wu, L. & Wang, R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol. 569, 519–531 (2005).
CASISIPubMedArticle
Fitzgerald, R. et al. H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal KATP channel. Biochem. Biophys. Res. Commun. 446, 393–398 (2014).
CASISIPubMedArticle
Dawe, G. S., Han, S. P., Bian, J. S. & Moore, P. K. Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience 152, 169–177 (2008).
CASISIPubMedArticle
Kimura, Y., Dargusch, R., Schubert, D. & Kimura, H. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal. 8, 661–670 (2006).
This is a demonstration of the potent cytoprotective effects of H2S in the central nervous system.
CASISIPubMedArticle
Distrutti, E. et al. Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J. Pharm. Exp. Therap. 316, 325–335 (2006).
CASArticle
Medeiros, J. V. et al. Role of KATP channels and TRPV1 receptors in hydrogen sulfide-enhanced gastric emptying of liquid in awake mice. Eur. J. Pharmacol. 693, 57–63 (2012).
CASISIPubMedArticle
Jiang, B., Tang, G., Cao, K., Wu, L. & Wang, R. Molecular mechanism for H2S-induced activation of KATP channels. Antioxid. Redox Signal. 12, 1167–1178 (2010).
CASISIPubMedArticle
Gade, A. R., Kang, M. & Akbarali, H. I. Hydrogen sulfide as an allosteric modulator of ATP-sensitive potassium channels in colonic inflammation. Mol. Pharmacol. 83, 294–306 (2013).
CASISIPubMedArticle
Mustafa, A. K. et al. H2S signals through protein S-sulfhydration. Sci. Signal. 2, ra72 (2009).
This paper identifies the original discovery of the chemical interaction of H2S with proteins (that is, protein S-sulfhydration).
PubMedArticle
Tang, G., Zhang, L., Yang, G., Wu, L. & Wang, R. Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic β cells. Diabetologia 56, 533–541 (2013).
CASISIPubMedArticle
Zhang, R. et al. Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLoS ONE 7, e37073 (2012).
CASPubMedArticle
Elies, J. et al. Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J. 28, 5376–5387 (2014).
CASISIPubMedArticle
Avanzato, D. et al. Role of calcium channels in the protective effect of hydrogen sulfide in rat cardiomyoblasts. Cell. Physiol. Biochem. 33, 1205–1214 (2014).
CASISIPubMedArticle
Sekiguchi, F. et al. Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells. Biochem. Biophys. Res. Commun. 445, 225–229 (2014).
CASISIPubMedArticle
Maeda, Y. et al. Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T type calcium channels. Pain 142, 127–132 (2009).
CASISIPubMedArticle
Tang, G. et al. H2S is an endothelium-derived hyperpolarizing factor. Antioxid. Redox Signal. 19, 1634–1646 (2013).
This study provides direct electrophysiological evidence for the role of H2S as an EDHF.
CASISIPubMedArticle
Mustafa, A. K. et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 109, 1259–1268 (2011).
This study provides chemical and functional evidence for the role of H2S as an EDHF.
CASPubMedArticle
Telezhkin, V. et al. Hydrogen sulfide inhibits human BKCa channels. Adv. Exp. Med. Biol. 648, 65–72 (2009).
CASPubMed
Li, Q. et al. A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid. Redox Signal. 12, 1179–1189 (2010).
CASISIPubMedArticle
Sitdikova, G. F., Weiger, T. M. & Hermann, A. Hydrogen sulfide increases Ca2+-activated K+ (BK) channel activity of rat pituitary tumor cells. Pflugers. Arch. 459, 389–397 (2010).
CASPubMedArticle
Jackson-Weaver, O. et al. Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca?+-activated K+ channels and smooth muscle Ca?+ sparks. Am. J. Physiol. Heart Circ. Physiol. 304, H1446–H1454 (2013).
CASPubMedArticle
Han, Y. F. et al. Evidence that endogenous hydrogen sulfide exerts an excitatory effect on gastric motility in mice. Eur. J. Pharmacol. 673, 85–95 (2011).
CASISIPubMedArticle
Cheang, W. S. et al. 4-aminopyridine-sensitive K+ channels contributes to NaHS-induced membrane hyperpolarization and relaxation in the rat coronary artery. Vascul. Pharmacol. 53, 94–98 (2010).
CASPubMedArticle
Tang, G., Wu, L. & Wang, R. Interaction of hydrogen sulfide with ion channels. Clin. Exp. Pharmacol. Physiol. 37, 753–763 (2010).
CASISIPubMedArticle
Bucci, M. et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler. Thromb. Vasc. Biol. 30, 1998–2004 (2010).
This paper reports the original discovery that H2S activates cGMP signalling via the inhibition of PDE, which contributes to the vasorelaxant and anti-inflammatory effects of H2S.
CASISIPubMedArticle
Coletta, C. et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl Acad. Sci. USA 109, 9161–9166 (2012).
PubMedArticle
Wang, R. Shared signaling pathways among gasotransmitters. Proc. Natl Acad. Sci. USA 109, 8801–8802 (2012).
PubMedArticle
Lu, M. et al. Hydrogen sulfide inhibits plasma renin activity. J. Am. Soc. Nephrol. 21, 993–1002 (2010).
CASISIPubMedArticle
Moccia, F. et al. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta. Curr. Pharm. Biotechnol. 12, 1416–1426 (2011).
CASISIPubMedArticle
Bauer, C. C., Boyle, J. P., Porter, K. E. & Peers, C. Modulation of Ca2+ signalling in human vascular endothelial cells by hydrogen sulfide. Atherosclerosis 209, 374–380 (2010).
CASISIPubMedArticle
Liang, G. H., Xi, Q., Leffler, C. W. & Jaggar, J. H. Hydrogen sulfide activates Ca?+ sparks to induce cerebral arteriole dilatation. J. Physiol. 590, 2709–2720 (2012).
CASPubMedArticle
Altaany, Z., Ju, Y., Yang, G. & Wang, R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci. Signal. 7, ra87 (2014).
CASPubMedArticle
Zhang, D. et al. Detection of protein S-sulfhydration by a tag-switch technique. Angew. Chem. Int. Ed. Engl. 53, 575–581 (2014).
CASPubMedArticle
Sen, N. et al. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol. Cell 45, 13–24 (2012).
CASISIPubMedArticle
Kelleher, Z. T., Matsumoto, A., Stamler, J. S. & Marshall, H. E. NOS2 regulation of NF-κB by S-nitrosylation of p65. J. Biol. Chem. 282, 30667–30672 (2007).
CASISIPubMedArticle
Beigi, F. et al. Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc. Natl Acad. Sci. USA 109, 4314–4319 (2012).
PubMedArticle
Wu, C. et al. Thioredoxin 1-mediated post-translational modi?cations: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid. Redox Signal. 15, 2565–2604 (2011).
CASISIPubMedArticle
Kabil, O. & Banerjee, R. Characterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H2S catabolism. J. Biol. Chem. 287, 44561–44567 (2012).
CASISIPubMedArticle
Yan, S. K. et al. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 351, 485–491 (2006).
CASISIPubMedArticle
Chang, T., Untereiner, A., Liu, J. & Wu, L. Interaction of methylglyoxal and hydrogen sulfide in rat vascular smooth muscle cells. Antioxid. Redox Signal. 12, 1093–1100 (2010).
CASISIPubMedArticle
Jeney, V. et al. Suppression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H2S). Free Radic. Biol. Med. 46, 616–623 (2009).
CASISIPubMedArticle
Liu, Y. Y. & Bian, J. S. Hydrogen sulfide protects amyloid β-induced cell toxicity in microglia. J. Alzheimers Dis. 22, 1189–1200 (2010).
CASISIPubMed
Vacek, T. P., Gillespie, W., Tyagi, N., Vacek, J. C. & Tyagi, S. C. Hydrogen sulfide protects against vascular remodeling from endothelial damage. Amino Acids 39, 1161–1169 (2010).
CASISIPubMedArticle
Xu, Z. S. et al. Hydrogen sulfide protects MC3T3 E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic. Biol. Med. 50, 314–323 (2011).
CASArticle
Módis, K. Asimakopoulou, A., Coletta, C., Papapetropoulos, A. & Szabo, C. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochem. Biophys. Res. Commun. 433, 401–407 (2013).
CASISIPubMedArticle
Szczesny, B. et al. AP39, a novel mitochondria-targeted sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitr. Oxide 41, 120–130 (2014).
CASArticle
Trionnaire, S. et al. The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). Med. Chem. Commun. 5, 728–736 (2014).
CASArticle
Yang, G. et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322, 587–590 (2008).
This study provides direct evidence for the physiological importance of endogenous H2S (mice deficient in CSE displayed significant elevations of blood pressure).
CASISIPubMedArticle
Papapetropolous, A. et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 106, 21972–21977 (2009).
PubMedArticle
Madden, J. A., Ahlf, S. B., Dantuma, M. W., Olson, K. R. & Roerig, D. L. Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. J. Appl. Physiol. 112, 411–418 (2012).
CASISIPubMedArticle
Skovgaard, N. & Olson, K. R. Hydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R487–R494 (2012).
CASPubMedArticle
Goubern, M. et al. Sulfide, the first inorganic substrate for human cells. FASEB J. 21, 1699–1706 (2007).
This paper highlights the ability of cells to utilize H2S to drive mitochondrial production of ATP, which appears to be an important rescue mechanism during hypoxia or anoxia.
CASISIPubMedArticle
Módis, K. Coletta, C., Erdélyi, K. Papapetropoulos, A. & Szabo, C. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J. 27, 601–611 (2013).
CASISIPubMedArticle
Olson, K. R. Hydrogen sulfide as an oxygen sensor. Clin. Chem. Lab. Med. 51, 623–632 (2013).
CASISIPubMedArticle
Chunyu, Z. et al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem. Biophys. Res. Commun. 302, 810–816 (2003).
CASPubMedArticle
Ariyaratnam, P., Loubani, M. & Morice, A. H. Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvasc. Res. 90, 135–137 (2013).
CASISIPubMedArticle
Wallace, J. L. et al. Anti-inflammatory and cytoprotective actions of hydrogen sulfide: translation to therapeutics. Antiox. Redox Signal. 22, 398–410 (2015).
CASISIArticle
Zhao, W. & Wang, R. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am. J. Physiol. Heart Circ. Physiol. 283, H474–H480 (2002).
This paper reveals some of the mechanisms underlying H2S-induced vasodilation, including the contributions of Ca2+ and the vascular endothelium.
CASPubMedArticle
Zhao, W., Ndisang, J. F. & Wang, R. Modulation of endogenous production of H2S in rat tissues. Can. J. Physiol. Pharmacol. 81, 848–853 (2003).
CASISIPubMedArticle
Du, J., Yan, H. & Tang, C. [Endogenous H2S is involved in the development of spontaneous hypertension]. Beijing Da Xue Xue Bao 35, 102 (2003).
PubMed
Ahmad, F. U. et al. Exogenous hydrogen sulfide attenuates oxidative stress in spontaneously hypertensive rats. Int. J. Pharm. Sci. Res. 4, 2916–2926 (2013).
Yanfei, W., Lin, S., Junbao, D. & Chaoshu, T. Impact of L-arginine on hydrogen sulfide/cystathionine-γ-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem. Biophys. Res. Commun. 345, 851–857 (2006).
CASPubMedArticle
Wei, H. L., Zhang, C. Y., Jin, H. F., Tang, C. S. & Du, J. B. Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats. Acta Pharmacol. Sin. 29, 670–679 (2008).
CASISIPubMedArticle
Wang, K. et al. Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 127, 2514–2522 (2013).
CASISIPubMedArticle
Holwerda, K. M. et al. Hydrogen sulfide attenuates sFlt1 induced hypertension and renal damage by upregulating vascular endothelial growth factor. J. Am. Soc. Nephrol. 25, 717–725 (2014).
CASISIPubMedArticle
Altaany, Z.1., Yang, G. & Wang, R. Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J. Cell. Mol. Med. 17, 879–888 (2013).
CASISIPubMedArticle
Wang, Y. et al. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 29, 173–179 (2009).
CASISIPubMedArticle
Mani, S. et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127, 2523–2534 (2013).
CASISIPubMedArticle
Liu, Z. et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E?/? mice. Br. J. Pharmacol. 169, 1795–1809 (2013).
CASISIPubMedArticle
Zhang, H. et al. Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS ONE 7, e41147 (2012).
CASPubMedArticle
Namekata, K. et al. Abnormal lipid metabolism in cystathionine β-synthase-deficient mice, an animal model for hyperhomocysteinemia. J. Biol. Chem. 279, 52961–52969 (2004).
CASISIPubMedArticle
Robert, K. et al. Cystathionine β synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology 128, 1405–1415 (2005).
CASISIPubMedArticle
Mani, S., Yang, G. & Wang, R. A critical life-supporting role for cystathionine γ-lyase in the absence of dietary cysteine supply. Free Radic. Biol. Med. 50, 1280–1287 (2011).
CASISIPubMedArticle
Jain, S. K., Micinski, D., Lieblong, B. J. & Stapleton, T. Relationship between hydrogen sulfide levels and HDL-cholesterol, adiponectin, and potassium levels in the blood of healthy subjects. Atherosclerosis 225, 242–245 (2012).
CASISIPubMedArticle
Fiorucci, S. et al. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 42, 539–548 (2005).
CASISIPubMedArticle
Tan, G. et al. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS ONE 6, e25943 (2011).
CASPubMedArticle
Morsy, M. A., Ibrahim, S. A., Abdelwahab, S. A., Zedan, M. Z. & Elbitar, H. I. Curative effects of hydrogen sulfide against acetaminophen-induced hepatotoxicity in mice. Life Sci. 87, 692–698 (2010).
CASISIPubMedArticle
Li, L. et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 19, 1196–1198 (2005).
CASISIPubMed
Norris, E. J. et al. Hydrogen sulfide modulates sinusoidal constriction and contributes to hepatic microcirculatory dysfunction during endotoxemia. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1070–G1078 (2013).
CASPubMedArticle
Wu, L. et al. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab. Invest. 89, 59–67 (2009).
CASISIPubMedArticle
Lipson, K. L., Fonseca, S. G. & Urano, F. Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr. Mol. Med. 6, 71–77 (2006).
CASISIPubMedArticle
Yang, G., Yang, W., Wu, L. & Wang, R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting β cells. J. Biol. Chem. 282, 16567–16576 (2007).
CASISIPubMedArticle
Jia, X. et al. The role of H2S in insulin resistance. 57th Annual Meeting of the Canadian Cardovascular Congress [online], (2004).
Veldman, B. A., Vervoort, G., Blom, H. & Smits, P. Reduced plasma total homocysteine concentrations in type 1 diabetes mellitus is determined by increased renal clearance. Diabet. Med. 22, 301–305 (2005).
CASPubMedArticle
Yusuf, M. et al. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem. Biophys. Res. Commun. 333, 1146–1152 (2005).
CASISIPubMedArticle
Yang, G., Tang, G., Zhang, L., Wu, L. & Wang, R. The pathogenic role of cystathionine γ-lyase/hydrogen sulfide in streptozotocin-induced diabetes in mice. Am. J. Pathol. 179, 869–879 (2011).
CASISIPubMedArticle
Whiteman, M. et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulfide. Diabetologia 53, 1722–1726 (2010).
CASISIPubMedArticle
Szabo, C. Roles of hydrogen sulfide in the pathogenesis of diabetes mellitus and its complications. Antioxid. Redox Signal. 17, 68–80 (2012).
CASISIPubMedArticle
Suzuki, K. et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc. Natl Acad. Sci. USA 108, 13829–13834 (2011).
This paper shows that endogenous or exogenous H2S can prevent hyperglycaemia-associated damage to the vascular endothelium, indicating the therapeutic potential of H2S in the prevention of diabetes-associated vasculopathy.
PubMedArticle
Liu, F. et al. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin 1 in type 2 diabetes. Diabetes 63, 1763–1778 (2014).
CASISIPubMedArticle
Zhong, X. et al. Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Mol. Cell. Biochem. 371, 187–198 (2012).
CASISIPubMedArticle
Eto, K., Asada, T., Arima, K., Makifuchi, T. & Kimura, H. Brain hydrogen sulfide is severely decreased in Alzheimer's disease. Biochem. Biophys. Res. Commun. 293, 1485–1488 (2002).
CASISIPubMedArticle
Tang, X. Q. et al. Effect of hydrogen sulfide on β-amyloid-induced damage in PC12 cells. Clin. Exp. Pharmacol. Physiol. 35, 180–186 (2008).
CASISIPubMed
Fan, H. et al. Hydrogen sulfide protects against amyloid β-peptide induced neuronal injury via attenuating inflammatory responses in a rat model. J. Biomed. Res. 27, 296–304 (2013).
CASPubMedArticle
Xuan, A. et al. Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in β-amyloid rat model of Alzheimer's disease. J. Neuroinflamm. 9, 202 (2012).
CASArticle
Zhang, L. M., Jiang, C. X. & Liu, D. W. Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem. Res. 34, 1984–1992 (2009).
CASISIPubMedArticle
Hu, L. F. et al. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell 9, 135–146 (2010).
CASISIPubMedArticle
Kida, K. et al. Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson's disease. Antioxid. Redox Signal. 15, 343–352 (2011).
CASISIPubMedArticle
Campolo, M. et al. A hydrogen sulfide-releasing cyclooxygenase inhibitor markedly accelerates recovery from experimental spinal cord injury. FASEB J. 27, 4489–4499 (2013).
CASISIPubMedArticle
Distrutti, E. et al. 5-amino 2 hydroxybenzoic acid 4-(5 thioxo 5H-[1,2]dithiol 3yl)-phenyl ester (ATB-429), a hydrogen sulfide-releasing derivative of mesalamine, exerts antinociceptive effects in a model of postinflammatory hypersensitivity. J. Pharmacol. Exp. Ther. 319, 447–458 (2006).
CASISIPubMedArticle
Matsunami, M. et al. Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 58, 751–771 (2009).
CASISIPubMedArticle
Ekundi-Valentim, E. et al. Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat. Br. J. Pharmacol. 159, 1463–1474 (2010).
CASISIPubMedArticle
Donatti, A. F. et al. Role of hydrogen sulfide in the formalin-induced orofacial pain in rats. Eur. J. Pharmacol. 738, 49–56 (2014).
CASISIPubMedArticle
Paquette, J. M. et al. Safety, tolerability and pharmacokinetics of trimebutine 3-thiobarbamoylbenzenesulfonate (GIC-1001) in a randomized Phase I integrated design study: single and multiple ascending doses and effect of food in healthy volunteers. Clin. Ther. 36, 1650–1664 (2014).
CASISIPubMedArticle
Fiorucci, S. et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129, 1210–1224 (2005).
CASISIPubMedArticle
Wallace, J. L. Physiological and pathophysiological roles of hydrogen sulfide in the gastrointestinal tract. Antioxid. Redox Signal. 12, 1125–1133 (2010).
CASISIPubMedArticle
Mard, S. A. et al. Gastroprotective effect of NaHS against mucosal lesions induced by ischemia-reperfusion injury in rat. Dig. Dis. Sci. 57, 1496–1503 (2012).
CASISIPubMedArticle
Zanardo, R. C. et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 20, 2118–2120 (2006).
This is the first demonstration of the potent anti-inflammatory effects of endogenous and exogenous H2S, including inhibition of leukocyte adherence to the vascular endothelium.
CASISIPubMedArticle
Wallace, J. L., Keenan, C. M. & Granger, D. N. Gastric ulceration induced by nonsteroidal anti-inflammatory drugs is a neutrophil-dependent process. Am. J. Physiol. 259, G462–G467 (1990).
CASISIPubMed
Blackler, R. W., Gemici, B., Manko, A. & Wallace, J. L. NSAID-gastroenteropathy: new aspects of pathogenesis and prevention. Curr. Opin. Pharmacol. 19, 11–16 (2014).
CASISIPubMedArticle
Takeuchi, K. et al. Gas mediators involved in modulating duodenal HCO3 secretion. Curr. Med. Chem. 19, 43–54 (2012).
CASISIPubMedArticle
Wallace, J. L., Caliendo, G., Santagada, V., Cirino, G. & Fiorucci, S. Gastrointestinal safety and anti-inflammatory effects of hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 132, 261–271 (2007).
CASISIPubMedArticle
Li, L. et al. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med. 42, 706–719 (2007).
CASISIPubMedArticle
Wallace, J. L., Caliendo, G., Santagada, V. & Cirino, G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br. J. Pharmacol. 159, 1236–1246 (2010).
CASISIPubMedArticle
Blackler, R. et al. Gastrointestinal sparing effects of novel NSAIDs in rats with compromised mucosal defence. PLoS ONE 7, e35196 (2012).
CASPubMedArticle
Wallace, J. L. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci. 28, 501–505 (2007).
CASISIPubMedArticle
Wallace, J. L., Ferraz, J. G. P. & Muscara, M. N. Hydrogen sulfide: an endogenous mediator of resolution of inflammation and injury. Antioxid. Redox Signal. 17, 58–67 (2012).
CASISIPubMedArticle
Wallace. J. L., Dicay, M., McKnight, W., Martin, G. R. Hydrogen sulfide enhances ulcer healing in rats. FASEB J. 21, 4070–4076 (2007).
This was the first study to highlight a critical role of H2S synthesis at sites of injury in driving repair in vivo, suggesting that H2S has important therapeutic potential.
CASISIPubMedArticle
Zayachkivska, O. et al. Cytoprotective effects of hydrogen sulfide in novel rat models of non-erosive esophagitis. PLoS ONE 9, e110688 (2014).
CASPubMedArticle
Wallace, J. L. Polypharmacy of osteoarthritis: the perfect intestinal storm. Dig. Dis. Sci. 58, 3088–3093 (2013).
CASISIPubMedArticle
Blackler, R. W. et al. Hydrogen sulfide protects against NSAID-enteropathy through modulation of bile and the microbiota. Br. J. Pharmacol. http://dx.doi.org/10.1111/bph.12961 (2014).
Flannigan, K. L., Ferraz, J. G. P., Wang, R. & Wallace, J. L. Enhanced synthesis and diminished degradation of hydrogen sulfide in experimental colitis: a site-specific, pro-resolution mechanism. PLoS ONE 8, e71962 (2013).
CASPubMedArticle
Fiorucci, S. et al. Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br. J. Pharmacol. 150, 996–1002 (2007).
CASISIPubMedArticle
Flannigan, K. L. et al. Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis. Proc. Natl Acad. Sci. USA 111, 13559–13564 (2014).
CASPubMedArticle
Wang, J. & Hegele, R. A. Genomic basis of cystathioninuria (MIM 219500) revealed by multiple mutations in cystathionine γ-lyase (CTH). Hum. Genet. 112, 404–408 (2003).
CASISIPubMed
Zhu, W., Lin, A. & Banerjee, R. Kinetic properties of polymorphic variants and pathogenic mutants in human cystathionine γ-lyase. Biochemistry 47, 6226–6232 (2008).
CASISIPubMedArticle
Banerjee, R. & Zou, C. G. Redox regulation and reaction mechanism of human cystathionine-β-synthase: a PLP-dependent hemesensor protein. Arch. Biochem. Biophys. 433, 144–156 (2005).
CASISIPubMedArticle
Ichinohe, A. et al. Cystathionine β-synthase is enriched in the brains of Down's patients. Biochem. Biophys. Res. Commun. 338, 1547–1550 (2005).
CASISIPubMedArticle
Billaut-Laden, I. et al. Evidence for a functional genetic polymorphism of the human mercaptopyruvate sulfurtransferase (MPST), a cyanide detoxification enzyme. Toxicol. Lett. 165, 101–111 (2006).
CASISIPubMedArticle
Blackstone, E., Morrison, M. & Roth, M. B. H2S induces a suspended animation-like state in mice. Science 308, 515 (2005).
CASArticle
Szabo, C. Hydrogen sulfide and its therapeutic potential. Nature Rev. Drug Discov. 6, 917–935 (2007).
Article
Wallace, J. L. Mechanisms, prevention & clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J. Gastroenterol. 19, 1861–1876 (2013).
ISIPubMedArticle
Kearney, P. M. et al. Do selective cyclo-oxygenase 2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomized trials. BMJ 332, 1302–1308 (2006).
CASISIPubMedArticle
Chattopadhyay, M., Kodela, R., Olson, K. R. & Kashfi, K. NOSH–aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model. Biochem. Biophys. Res. Commun. 419, 523–528 (2012).
CASISIPubMedArticle
Kashfi, K. Anti-cancer activity of new designer hydrogen sulfide-donating hybrids. Antioxid. Redox Signal. 20, 831–846 (2014).
CASISIPubMedArticle
Karabulut, G. S. et al. The incidence of irritable bowel syndrome in children using Rome III criteria and the effect of trimebutine treatment. J. Neurogastroenterol. Motil. 19, 90–93 (2013).
PubMedArticle
Elrod, J. W. et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl Acad. Sci. USA 104, 15560–15565 (2007).
In this study, the potent cardioprotective effects of H2S were demonstrated in experimental myocardial infarction, and shown to be largely attributable to the preservation of myocardial mitochondrial function and reduced production of reactive oxygen species.
PubMedArticle
Li, L. et al. Characterization of a novel, water soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117, 2351–2360 (2008).
CASISIPubMedArticle
Li, L. et al. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic. Biol. Med. 47, 103–113 (2009).
CASISIPubMedArticle
Li, L. et al. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J. Cell. Mol. Med. 17, 365–376 (2013).
CASISIPubMedArticle
Bucci, M. et al. Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition. Cardiovasc. Res. 102, 128–147 (2014).
CASPubMedArticle
McCook, O. et al. H2S during circulatory shock: some unresolved questions. Nitr. Oxide http://dx.doi.org/10.1016/j.niox.2014.03.163 (2014).
Olson, K. A practical look at the chemistry and biology of hydrogen sulfide. Antiox. Redox Signal. 17, 32–44 (2012).
CASISIArticle
Shen, X., Peter, E. A., Bir, S., Wang, R. & Kevil, C. G. Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic. Biol. Med. 52, 2276–2283 (2012).
CASISIPubMedArticle
Peter, E. A. et al. Plasma-free H2S levels are elevated in patients with cardiovascular disease. J. Am. Heart Assoc. 2, e000387 (2013).
CASPubMedArticle
Bos, E. M. et al. Cystathionine γ lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J. Am. Soc. Nephrol. 24, 759–770 (2013).
CASISIPubMedArticle
Shirozu, K. et al. Cystathionine γ lyase deficiency protects mice from galactosamine/lipopolysaccharide-induced acute liver failure. Antioxid. Redox Signal. 20, 204–216 (2014).
CASISIPubMedArticle
Shen, X. et al. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic. Biol. Med. 60, 195–200 (2013).
CASISIPubMedArticle
Flannigan, K. L., McCoy, K. D. & Wallace, J. L. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G188–G193 (2011).
CASPubMedArticle
Mimoun, S. et al. Detoxification of H2S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxid. Redox Signal. 17, 1–10 (2012).
CASISIPubMedArticle
Motta, J. P. et al. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm. Bowel Dis. http://dx.doi.org/10.1097/MIB.0000000000000345 (2015).
Rey, F. E. et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl Acad. Sci. USA 110, 13582–13587 (2013).
PubMedArticle
Berg, J. S. et al. Polysulfides as intermediates in the oxidation of sulfide to sulfate by Beggiatoa spp. Appl. Environ. Microbiol. 80, 629–636 (2014).
CASISIPubMedArticle
Furne, J., Saeed, A. & Levitt, M. D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than present accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1479–R1485 (2008).
CASPubMedArticle
Magee, E. A., Richardson, C. J., Hughes, R. & Cummings, J. H. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 72, 1488–1494 (2000).
CASISIPubMed
Roediger, W. E., Duncan, A., Kapaniris, O. & Millard, S. Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin. Sci. 85, 623–627 (1993).
CASISIPubMed
Attene-Ramos, M. S., Wagner, E. D., Plewa, M. J. & Gaskins, H. R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 4, 9–14 (2006).
CASISIPubMedArticle
Cao, Q. et al. Butyrate-stimulated H2S production in colon cancer cells. Antioxid. Redox Signal. 12, 1101–1109 (2010).
CASISIPubMedArticle
Chan, M. V. & Wallace, J. L. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G467–G473 (2013).
CASPubMedArticle
请您先登陆,再发跟帖!

发现Adblock插件

如要继续浏览
请支持本站 请务必在本站关闭/移除任何Adblock

关闭Adblock后 请点击

请参考如何关闭Adblock/Adblock plus

安装Adblock plus用户请点击浏览器图标
选择“Disable on www.wenxuecity.com”

安装Adblock用户请点击图标
选择“don't run on pages on this domain”