嘉当空间  在n维空间里,以(n-1)维超曲面领域的表面积概念为基础而构成的几何

在19世纪中,已经出现了黎曼几何。它是以定义空间两邻点间的距离平方的二次微分形式为基础而建立起来的。

纠错 编辑摘要

一般空间微分几何学 - 正文

20世纪以来,因受到广义相对论的影响,黎曼几何发展很快,从此产生了以更一般的曲线长度积分为基础的芬斯勒空间,以超曲面的面积积分为基础的嘉当空间,以二阶微分方程组为基础的道路空间和K展空间等等,而这些通称一般空间。
芬斯勒空间 设M是参考于一系坐标xi(i=1,2,…,n)的n维集合,并且它的曲线xi=xi(t)的“弧长”是按照积分

一般空间微分几何学

定义起来的(其中,一般空间微分几何学ρ>0)。这时,称M为芬斯勒空间。特别是,当

一般空间微分几何学

时,得到黎曼空间。P.芬斯勒(1918)在其学位论文中曾经把黎曼空间的一些结果拓广到这个空间来,但是它的微分几何到É.嘉当(1934)才逐渐趋于完整。例如,这个空间仿射联络的确定,曲率论的建立等研究,都是以后才发展起来的。仅仅要指出,芬斯勒空间的测地线(即上列积分的极值曲线)的微分方程具有如下的形式:

一般空间微分几何学

式中一般空间微分几何学是由F(x,凧)确定的某种函数组。
近年来,无限维的芬斯勒流形在非线性分析中有重要作用。
嘉当空间  在n维空间里,以(n-1)维超曲面领域的表面积概念为基础而构成的几何,称n维嘉当空间几何。设(x)=( x1,x2,…,xn)表示空间一点的坐标,(u)=(u1,u2,…,un)表示该点切空间的(n-1)维子空间的齐次坐标,(xu)称为点(x)的超平面素。以B表示超平面素所成的一个区域,采用一个在B是正则的而且取正值的函数Lx,u),这里L关于ui是正齐一次的,L(x,ρu)=ρL(x,u),(ρ>0),并约定,在超平面素(x,u)的(n-1)维表面积元素为

一般空间微分几何学

为了改写dO,设一般空间微分几何学是光滑超曲面F的正则参数表示。从(n-1)×n矩阵一般空间微分几何学删去第k行,而且用(-1)k+1pk表示这样得出的(n-1)阶行列式。那么,从上列的约定便导出一个在有向超曲面F的区域上的(n-1)重积分

一般空间微分几何学

它表示了这个区域的“(n-1)维表面积”。
从基本函数 Lxu)作 一般空间微分几何学 且令α=det|αik|,嘉当的测度张量可表成

一般空间微分几何学

这样,这种空间微分几何便有了发展的基础,特别重要的是研究面积积分的第一和第二变分,以及极值离差理论,即能保持极值超曲面的无穷小变形的方程。
K展空间  设在N 维空间SN里给定了一组K 维流形,使得组中有一个且仅有一个流形通过一般位置下的任何K+1个邻近点,或者和任何一个已知的K维元素(按照一点和其衔接的K维平坦流形组成的元素)相切。这些K维流形简称K展,具有这种结构的N维空间SNK展空间。特别是,当K=1时,SN就是道路空间。
设(xi;i=1,2,…,N)是SN的一点的坐标,那么每个K展可表成一般空间微分几何学或简写为一般空间微分几何学,式中各函数是变数u和参数α的解析函数(或充分光滑的函数)。从定义易知

一般空间微分几何学

如果由K展的表达式消去参数α,便获得仿射K展空间的偏微分方程组

一般空间微分几何学

式中函数一般空间微分几何学p的齐二次函数。
根据J.道格拉斯导进一个仿射联络到仿射 K展空间SN

一般空间微分几何学

从而把上列偏微分方程组改写成

一般空间微分几何学

从这个仿射联络一般空间微分几何学不但可以导出仿射曲率张量一般空间微分几何学,还可作出射影联络以及有关的偏微分方程组的可积分条件,还可证明;嘉当的“平面公理”的成立与空间为射影平坦是等价的。

所有跟帖: 

dailycheck01 whatstrading.com www.livevol.blogspot.com -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (365 bytes) () 07/08/2011 postreply 10:59:47

dailycheck01 wallstcheatsheet.com 散仙甲 on yoku -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (8706 bytes) () 07/08/2011 postreply 11:27:16

量子場論的泛函積分法 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (11635 bytes) () 07/08/2011 postreply 12:21:37

哈密顿量的分布为什么要选择成 Gauss 型分布,在矩阵阶数 N→∞ 的极限下它的本征值分布具有普适性 (即不依赖于哈密顿量的特 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (868 bytes) () 07/08/2011 postreply 14:30:40

资金流模型 金融市场定价理论前沿综述 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (1857 bytes) () 07/08/2011 postreply 14:51:28

单原子单模光场相互作用系统的纠缠 单原子双模光场相互 作用系统的纠缠 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (74539 bytes) () 07/08/2011 postreply 15:38:33

JCM01 表征单模光场与单个理想二能级原子单光子相互作用的Jaynes—Cummings模型(以下简称标准JCM), -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (6415 bytes) () 07/08/2011 postreply 15:46:57

资金流 泛函控制着具有固定端点的资金流轨迹 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (35485 bytes) () 07/08/2011 postreply 15:52:25

金融市场的Yang-Mills泛函设是紧致黎曼流形上的主纤维丛 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (19867 bytes) () 07/08/2011 postreply 16:05:09

实变函数L积分,奇异函数;泛函分析不仅给出的是最优路径,而不是微积分中的最优点 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (5077 bytes) () 07/08/2011 postreply 14:37:49

DFT01 第四章密度泛函理论(DFT) -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (2123 bytes) () 07/08/2011 postreply 14:44:07

DFT01 高斯对不收敛问题的对策 经过一定次数的循环后,某次循环前和循环后的电荷密度差别小于一定的标准,我们称之为收敛。 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (11321 bytes) () 07/08/2011 postreply 15:01:43

DFT01 对应的能级间距的分布是泊松分布 可积的系统是指除能量之外,还有其他的守恒量.系统的运动可以用这些守恒量 来刻划.相反 -marketreflections- 给 marketreflections 发送悄悄话 marketreflections 的博客首页 (109296 bytes) () 07/08/2011 postreply 15:30:18

请您先登陆,再发跟帖!