张宏兵:黎曼几何和广义相对论(十六) (图)


http://blog.sina.com.cn/s/blog_3fd642cf0100ekrp.html abada(张宏兵):黎曼几何和广义相对论(十六)(2009-09-13 00:55:23)标签:黎曼几何 广义相对论 张宏兵 abada 张量 短程线 测地线 教育 分类:广义相对论 十六、四维弯曲时空 上面讲了很多数学,现在开始多讲物理。 广义相对论认为任何观察者在任何物体上都可建立参考系,并以同样的张量方程等效地描述某些基本物理定律。还认为物体质能可导致四维时空的弯曲。 我们的视觉往往只能看到三维空间中的二维曲面的弯曲的图像,看见低维空间的弯曲, 并不能证明高维空间是否弯曲。要直觉地看见三维空间的弯曲,就要建立“空间弯曲”的操作定义。 我们在把欧几里德几何空间对应现实世界的时候,是把真空中的光线作为直线的操作性对应物,或者简单地说光子在真空中是按直线运动的。这时欧几里德几何学体系就成为可以证伪的物理学。例如三条光线所构成的三角形,其性质(比如内角和等于p),是否如同欧几里德体系的定理的断言?如果不是,那么光线就不能当作欧氏几何中的直线而运用欧氏定理断言现实世界的空间关系。 但是,我们暂时并不能找到比光线更好的空间基准。我们日常生活中,检查其他物体的线条是否“直”,也是以光线作为“直”的基准而判断的。如果光线都不直了,那么现实世界空间就已经没有了“直”的基准。我们对现实空间也就不能再套用欧氏几何了。我们必须用新的几何学,而光线在新几何学中有新的数学对应概念。如此我们才能运用新几何学结合光线的现实操作,来预言现实世界的某些时空性质。 显然,在加速参考系,即非惯性系,光子并不按直线运动。设想你站在旋转的地球赤道上,向上、向太空发射一个光脉冲。你作为观察者站在地面参考系不动,你会看到光脉冲在向远处快速行进的同时,还会绕地球转动。它的轨迹显然不是直线,而更接近是螺旋线。 爱因斯坦电梯是一个很好的想象实验。如果我们在太空中的密闭电梯中,远离其他物质,我们会失重。但这时如果有火箭不断地为电梯提供一个稳定的加速度,我们电梯就成为一个加速参考系。如果太空中一个光脉冲从我们电梯真空中通过,我们也会观察到一个光脉冲的路径会发生偏折。这时我们看到了电梯参考系的空间是弯曲的。 等效原理断言:我们的那个电梯到底是处在重力场中,还是正在太空中被火箭加速着,我们作为电梯狭小空间中的观察者,是无法辨别的,做任何实验也无法区分这两种环境。因此,一个光脉冲的路径在重力场中,与在加速参考系中一样会偏折。这样的话,重力场也就等效于弯曲空间。 相反地,还可想象我们的电梯在重力场中自由下落。在一段时间内,我们可观察到我们的电梯空间是平直的,我们作为电梯中的观察者,看到光子的路径是直线。电梯中的失重状态等效于孤立系统的惯性系。 上面说的只是我们感到的空间弯曲,但不要忘了四维时空是一个整体。四维时空的弯曲,我们还是难以直觉地看到。在借助抽象的数学的同时,我们可以想象把低维空间的弯曲的性质做推广。 我们还可以把高维空间做切片,成为低维空间。如下图: 图中有个时间参数轴t,和一个空间参数虚数轴xi。这是一个弯曲的四维伪黎曼空间—弯曲的四维时空的二维切片膜图示。弯曲的四维时空,降低为二维的时空曲面,让我们看到了。这个曲面上的一个点,就可表示一个事件发生的空间位置和时间刻度。一个质点,包括光子,其运动路径就可以表示为这个曲面上的一条曲线:它在什么时刻,到达什么空间位置,由一条时空曲线决定了。曲线的切线方向则是一个速度分量的方向,其“斜率”则可能表示一个速度分量值,“斜率”的变化可能意味着加速度的存在。这个“斜率”一词之所以加了引号,是因为我们还是为了直觉方便套用了欧氏几何空间中的概念,而在弯曲时空的几何学中,可能有更准确的概念来使用。 注意这个曲面上并不存在直线。因此,在弯曲时空中,我们完全可能建立非惯性系和引力场中的光子等支点运动的四维曲线方程。 (我们还假设,这个四维弯曲时空中这些曲线是处处可微的和可导的,是平滑的,构成一个黎曼流形。一个光滑的皮球是流形,而针尖不是流形。这些概念的确切定义在微分几何数学中可以给出。)
请您先登陆,再发跟帖!