8、函数y=x2(x>0)的图像在点(ak,ak2) 处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____ 9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为 1,则实数c的取值范围是______▲_____ 10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2, 则线段P1P2的长为_______▲_____ 11、已知函数,则满足不等式的x的范围是____▲____ 12、设实数x,y满足3≤≤8,4≤≤9,则的最大值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则__▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足()·=0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为 125m,问d为多少时,α-β最大 18.(16分)在平面直角坐标系中,如图,已知椭圆的左右顶点为A,B,右顶点为F,设过点T()的直线TA,TB与椭圆分别交于点M,,其中m>0, ①设动点P满足,求点P的轨迹 ②设,求点T的坐标 ③设,求证:直线MN必过x轴上的一定点(其坐标与m无关) 19.(16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列. ①求数列的通项公式(用表示) ②设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为 20.(16分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质. (1)设函数,其中为实数 ①求证:函数具有性质 ②求函数的单调区间 (2)已知函数具有性质,给定,,且,若||<||,求的取值范围
号称神一样的江苏高考数学试题。。。。
8、函数y=x2(x>0)的图像在点(ak,ak2) 处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____ 9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为 1,则实数c的取值范围是______▲_____ 10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2, 则线段P1P2的长为_______▲_____ 11、已知函数,则满足不等式的x的范围是____▲____ 12、设实数x,y满足3≤≤8,4≤≤9,则的最大值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则__▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足()·=0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为 125m,问d为多少时,α-β最大 18.(16分)在平面直角坐标系中,如图,已知椭圆的左右顶点为A,B,右顶点为F,设过点T()的直线TA,TB与椭圆分别交于点M,,其中m>0, ①设动点P满足,求点P的轨迹 ②设,求点T的坐标 ③设,求证:直线MN必过x轴上的一定点(其坐标与m无关) 19.(16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列. ①求数列的通项公式(用表示) ②设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为 20.(16分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质. (1)设函数,其中为实数 ①求证:函数具有性质 ②求函数的单调区间 (2)已知函数具有性质,给定,,且,若||<||,求的取值范围
所有跟帖:
•
出题负责人为南大退休教授,曾领学生建模赛,得全国冠军.
-jinjing-
♀
(53 bytes)
()
06/09/2011 postreply
20:33:50
•
现在看到水池一头加水一头放水的题目都觉得好难啊
-小宁波♂-
♂
(0 bytes)
()
06/13/2011 postreply
14:19:23
•
对江苏理科人不太难.您知识广,很难每门都精.
-jinjing-
♀
(90 bytes)
()
06/13/2011 postreply
18:10:39