设f(m,n)为A在有m个蛋糕,B有n次优先权时的所得,
则f(m,n)的值为:
1,m,当n=0,
2,m/2,当n=m,
3,f(m-1,n-1)+ p, 当m<>n且B使用了一次优先权
4,f(m-1,n)+1-p,当m<>n而B没有使用优先权
1,2为递归的终结条件,递归由3,4产生
A分蛋糕的原则是无论B使用还是不使用优先权,应始3与4保持一致从这个等式里可以求得
p=(1+f(m-1,n) - f(m-1,n-1))/2
回复:回复::) 恩-题是懂了-但好像答案还没有
所有跟帖:
•
回复:回复:回复::) 恩-题是懂了-但好像答案还没有---现在好像有答案了
-m6412-
♂
(122 bytes)
()
07/19/2010 postreply
12:00:08
•
回复:回复:回复:回复::) 恩-题是懂了-但好像答案还没有---现在好像有答案了
-m6412-
♂
(104 bytes)
()
07/19/2010 postreply
13:33:36
•
B(m,1) 和 A(m,1)
-m6412-
♂
(69 bytes)
()
07/20/2010 postreply
10:38:17
•
谁能给出A(m,n)和B(m,n)
-m6412-
♂
(0 bytes)
()
07/20/2010 postreply
10:39:17
•
:)
-guest007-
♀
(214 bytes)
()
07/20/2010 postreply
14:27:24
•
有直算式吗?
-m6412-
♂
(20 bytes)
()
07/27/2010 postreply
06:09:03