You are close, but not exactly

本帖于 2010-04-15 10:02:55 时间, 由版主 于德利 编辑
回答: noSwiperTheFox2010-04-14 08:21:48

Don't rush to judge the quality of the question. From my point of view, it is indeed a good question.

1. Although it is complicated, you can still use combinatorial and permutation. You just need to be careful.

2. The extension of question enter the realm of graph theory, which makes it more interesting, and heading toward broader applications.

所有跟帖: 

72=(5!-4!*2) -jinjing- 给 jinjing 发送悄悄话 (10 bytes) () 04/15/2010 postreply 13:26:38

This seems to be the best solution, can you reveal details? -SwiperTheFox- 给 SwiperTheFox 发送悄悄话 SwiperTheFox 的博客首页 (6 bytes) () 04/16/2010 postreply 09:44:10

Thanks. -jinjing- 给 jinjing 发送悄悄话 (0 bytes) () 04/17/2010 postreply 05:17:39

details? please! -皆兄弟也- 给 皆兄弟也 发送悄悄话 皆兄弟也 的博客首页 (0 bytes) () 04/16/2010 postreply 12:19:17

回复:details? please! -jinjing- 给 jinjing 发送悄悄话 (221 bytes) () 04/16/2010 postreply 16:00:53

2*4!可以理解,5!仍不太明白。anyway, thank you! -皆兄弟也- 给 皆兄弟也 发送悄悄话 皆兄弟也 的博客首页 (0 bytes) () 04/16/2010 postreply 20:55:59

回复:2*4!可以理解,5!仍不太明白。anyway, thank you! -jinjing- 给 jinjing 发送悄悄话 (161 bytes) () 04/17/2010 postreply 05:43:11

请您先登陆,再发跟帖!