另一种解法

回答: 回复:Cancel my anwser,It seems 1/13jinjing2010-03-28 10:21:44

前面一解说了,一共是6种不同的position:
P1: 所有跟(1,3)equivalent的
P2: 所有跟(1,2)equivalent的
P3: 所有跟(1,1)equivalent的——终点
P4: 所有跟(2,2)equivalent的
P5: 所有跟(2,3)equivalent的
P6: 所有跟(3,3)equivalent的——回到这就out了

有点brute force哈
第1步:
probability of reaching one of P2 = 1

第2步:
probability of reaching one of P4 = 1/3
probability of reaching one of P1 = 1/3
probability of reaching one of P6 = 1/3 (out)

第3步:
probability of reaching one of P2 = 1/3
probability of reaching one of P5 = 1/3

第4步:
probability of reaching one of P4 = 2/9
probability of reaching one of P1 = 2/9
probability of reaching one of P6 = 1/9 (out)
probability of reaching one of P3 = 1/9 (终点)

注意这第4步已经重复第2步了,不过probability已经是第2步的2/3了,将来第6步,第8步还会重复。Then, the probability of reaching one of P3 is
1/9 * (1 + 2/3 + 4/9 + 8/27 + ...) = 1/3

所有跟帖: 

oops,回错贴了,应该是knight jump,版主帮删了吧 -空指针异常- 给 空指针异常 发送悄悄话 (0 bytes) () 03/31/2010 postreply 11:56:31

请您先登陆,再发跟帖!