http://www.lunwenw.net/Html/wuli/101420821_2.html
2.3哈密顿系统、天上的混沌和量子世界的混沌
在18世纪和19世纪,牛顿力学看来是揭示了一个永恒自然之序。从现代的观点看,牛顿系统仅仅是一种在建立实在模型中有用的动力系统。为了说明牛顿系统的起始状态,必须知道其中所有粒子的位置和速度。在19世纪中叶前后,数学家威廉姆·哈密顿引入了一种非常优美的有效的数学形式。他富有成果的思想是用所谓的哈密顿函数H来标志一个保守系统,此函数H用所有位置和动量变量来表达系统的总能量(=动能加上势能)。一个微粒的速度不过是其位置对于时间的变化率,动量则是其速度乘以质量。牛顿系统用牛顿运动第二定律来描述,此定律涉及到加速度,即位置变化率的变化。因此,在数学上,它们由二阶方程来定义。在哈密顿表达式中,有两组方程。一组方程描述粒子的动量怎样随时间而变化,另一组描述位置怎样随时间而变化。显然,哈密顿方程描述了量(例如位置或动量)的变化率。因此,我们获得了一种以一阶方程进行数学描述的还原,此方程当然是确定论的。对于具有3个独立空间方向的n个未约束粒子的动力系统,就有3n个位置坐标和3n个动量坐标。
由于适当地选用哈密顿函数H,哈密顿方程就可以用来标志任何经典动力系统,而不仅仅是牛顿系统。甚至在麦克斯韦电动力学中,就其任一给定时间的数值而言,类哈密顿方程也提供了电场和磁场随时间的变化率。唯一的区别在于,麦克斯韦的方程是场方程而不是粒子方程,描述系统的状态时需要无限数量的参量,在空间的所有点上都使用场矢量,而不是使用无限多个参量——对每一粒子都使用3个位置坐标和3个动量坐标。对于狭义相对论和(进行了某种修订的)广义相对论,哈密顿方程都是有效的。玻尔对应原理实现的由经典力学向量子力学转变的关键性步骤,甚至也采取哈密顿表达式的框架。这些应用将在后面进行解释。现在只须记住,对于物理学中建立动力学模型,哈密顿方程提供了一种普遍的表达方式。
相应的态空间允许我们把动力系统在每一“阶段”的演化形象化。因此,它们被称作相空间。对于n个粒子的系统,相空间的维数是3n+3n=6n。相空间的一个点代表着其中有n个粒子的可能复杂系统的整个状态。哈密顿方程决定着相空间的相点的轨迹。整体上看,它们描述了所有相点的变化率,因此定义了该相空间的一个矢量场,决定着相应系统的总的动力学。
经验应用中的一个众所周知的事实是,不可能任意精确地测定动力学模型的状态。一个数量的测量值可能有些微小的差异,它们是由测量仪器、环境的约束等等原因造成的。相应地,相点集中在某些小的邻域之中。由此引出了一个关键性问题,在其具有邻近终态的意义上,从邻近的起始态出发的轨迹是否是局域稳定的。在图2.13a中,时刻零的起始态的相状态区域Ro被矢量场的动力学拖到后来的时间t的区域Rt(当然,实际的大量数目的坐标在这种相空间的形象表示中必须忽略掉)。
在此情形中,相似的起始状态导致了相似的终态。这个假设不过是一种以哈密顿动力学语言描述的经典性因果关系原理:类似的原因将导致类似的结果。历史上,从莱布尼茨到麦克斯韦的哲学家和物理学家都相信这个因果关系原理,它似乎保证了测量过程的稳定性以及预测的可能性,而可以不管显著的不精确性差距。
值得注意的是,哈密顿表达式的表象允许一种关于经典动力系统的因果关系一般性陈述。由数学家刘维的著名定理,即在任何哈密顿动力学中,因而对于任何的保守动力系统,相空间的任一区域的体积都必定保持不变。结果是,在图2.13a中的起始区域Ro的大小,是任何哈密顿动力学都不可能使之增大的,如果我们把“大小”正确地理解为相空间的体积。但是,它的保守性并不排除,其起始区域的形状被扭曲并扩展到相空间的大范围(图
[注:该文章转自[中国论文服务网 www.lunwenw.net] 原文链接:http://www.lunwenw.net/Html/wuli/101420821.html
哈密顿系统、天上的混沌和量子世界的混沌
回答: 清华 牛顿方程本身是一个矢量方程,F和a都是矢量,因此我们最好建立一个坐标系在每一点提供一组线性无关的基矢量将牛顿方程投影在这
由 marketreflections
于 2010-05-21 15:56:08
所有跟帖:
•
在量子力学中,微粒可能具有的每一位置,都是所有位置的集合中的一种交换组合,其权重为复数。于是,我们得到了一个关于位置的复函数,即
-marketreflections-
♂
(3402 bytes)
()
05/21/2010 postreply
20:31:34