在量子力学中,微粒可能具有的每一位置,都是所有位置的集合中的一种交换组合,其权重为复数。于是,我们得到了一个关于位置的复函数,即

为了稍稍详尽一些说明这种数学的特点,让我们想像一粒量子微粒。在经典理论中,一粒微粒是由它的空间的位置和它的动量来确定的。在量子力学中,微粒可能具有的每一位置,都是所有位置的集合中的一种交换组合,其权重为复数。于是,我们得到了一个关于位置的复函数,即所谓的波函数Ψ(x)。每一位置x,Ψ(x)的值标志了该粒子在X处的波幅。在此位置的某个一定的小间隔中找到此粒子的几率,由波幅的平方模|Ψ(x)|2给出。各个可能的不同动量的波幅也是由波函数确定的。因此,希尔伯特空间是一个量子系统状态的复空间。

量子状态的因果动力学由偏微分方程来确定,这叫做薛定谔方程。经典可观测量是可对易的,与此相反,量子系统的非经典可观测量是不可对易的,一般没有共同的本征值,自然也就没有确定的本征值。对于量子状态的可观测量,只可能计算出统计的预期值。

薛定谔量子表达式的一个基本性质是叠加原理,这表明了它是线性的。例如,考虑两个发生相互作用的量子系统(例如一对以相反方向离开共同光源的光子)。甚至当它们在远距离处已没有物理相互作用时,它们也保留着共同的状态叠加性,这是不可能分离开或局域化的。在这样的关联的(纯的)量子叠加态,两个量子系统的某一个可观测量只可能有不确定的本征值。量子力学的叠加或线性原理提供了组合系统的相关的(关联的)状态,这已经在EPR实验中得到了高度的确证。从哲学上看,(量子)整体大于其部分之和。非局域性是量子世界的一个基本性质,这不同于经典的哈密顿系统。我们在讨论心-脑和人工智能的出现时,将返回到这个问题(第4-5章)。

玻尔的对应原理引出了这样一个问题:经典的哈密顿系统中存在混沌运动是否将导致相应的量子系统中的无规性。我们对量子力学基本概念的概括给出了某些线索:在从经典的混沌系统转变成相应的量子力学系统时,可望有些变化。与经典力学相反,量子力学仅仅允许统计期望值。尽管薛定谔方程在叠加原理的意义上是线性的,并可以(例如对谐振子)精确求解,而且波函数是由薛定谔方程严格确定的,但这都并不意味着量子状态的性质可以精确地加以计算。我们只可能计算出,在某个空-时点上找到光子或电子的几率密度。

因为海森伯的不确定性原理,在量子世界没有轨迹。因此,用接近的轨迹以指数快速分离来确定性混沌,对于量子系统是不可能的。不确定性原理的另一个方面涉及到的混沌是值得注意的:具有如图2.16所示混沌区的经典相空间。不确定性原理意味着,体积hn中的2n维相空间众多的点是不可分辨的。原因在于小于hn的混沌行为在量子力学中是无法表达出来的。只有在这些混沌区域之外的规则的行为才有可能被表达出来。在此意义上,微小而有限的普朗克常数值可能抑制了混沌。

在量子力学中,人们区分了与时间无关的稳恒系统和与时间相关的哈密顿系统。对于具有稳恒哈密顿量的系统,薛定谔方程可以归结为所谓的线性本征值问题,它允许人们计算出例如氢原子的能级。只要这些能级是分离的,波函数的行为就是规则的,就不会有混沌。这里引出的问题是,具有规则的经典限度的量子系统的能谱,与其相应的经典系统表现出混沌的量子系统的能谱,它们之间是否有区别。时间相关的哈密顿量被用来描述诸如基本粒子和分子的时间演化。

按照玻尔对应原理,可以从研究某些经典哈密顿系统来入手对量子混沌进行考察。它们可以是可积的,近可积的或者混沌的。因此,能量超平面上的轨迹可以是规则的,近规则的或者近混沌的。用相应的算符来代替位置和动量的矢量,使得哈密顿函数量子化,我们就获得相应量子系统的哈密顿算符。接下来就可以推导薛定谔方程和本征值方程。现在,我们可以问一问,经典系统及其可积、近可积或混沌行为的特性,是否可以转变成相应的量子系统。能谱、本征函数等等的情况怎样?这些问题都概括在“量子混沌”的标题下。例如,一些计算表明,一个圆柱势垒中的自由量子粒子的能谱(经典运动对此是混沌的),与圆周上的自由量子粒子的能谱(经典运动对此是规则的)是完全不一样的。
[注:该文章转自[中国论文服务网 www.lunwenw.net] 原文链接:http://www.lunwenw.net/Html/wuli/101420821_5.html

请您先登陆,再发跟帖!