球状波函数:一般来说,一个系统不会处于其任何一个可观察量的本征态上,但是假如我们测量一个可观察量的话,其波函数就会立刻处于该可观

在这裡以一个自由粒子为例。一个自由粒子的量子态,可以被一个任意在空间分布的波函数来表示。位置和动量是该粒子的可观察量。位置的本征态之一,是一个在一个特定的位置 x ,拥有一个巨大的值,在所有其它位置的值为 0 的波函数。在这个情况下,进行一次位置测量的话,可以确定 100% 的可能性,该粒子位於 x 。与此同时,其动量的本征态是一个平面波。事实上,该平面波的波长h / p ,在这裡 h 是普朗克常数,而 p 是该本征态的动量。

一般来说,一个系统不会处于其任何一个可观察量的本征态上,但是假如我们测量一个可观察量的话,其波函数就会立刻处于该可观察量的本征态上。这个过程被称为波函数塌缩。假如,我们知道测量前的波函数是怎样的话,我们可以计算出它塌缩到不同本征态的机率。比如一般来说,上述自由粒子的波函数是一个波包,这个波函数分布于一个平均位置 x0 周围。它既不是位置,也不是动量的本征态。但假如我们测量这个粒子的位置的话,我们无法精确地预言测量结果,我们只能给出测量结果的可能性。可能我们测量到的位置在 x0 附近,因为这裡的可能性最高。测量后该粒子的波函数倒塌到了一个位於测量结果 x 的位置本征态。

使用薛定谔方程,来计算上述自由粒子,获得的结果,可以看出该波包的中心,以恒定的速度在空间运动,就像在经典力学中,一个不受力的粒子一样。但是随着时间的发展,这个波包会越来越弥散,这说明其位置测量会越来越不精确。这也说明,随着时间的发展,本来非常明确的位置本征态会不断弥散,而这个弥散的波包就已经不再是位置的本征态了。

请您先登陆,再发跟帖!