计算环面的同伦群。零阶同伦群为零,因为没有一维洞;基本群之所以重要,除它能描述二维洞以外,它与Poincare猜想之关连可能是最

作为一个例子,我们计算环面的同伦群。零阶同伦群为零,因为没有一维洞。一阶同伦群有三个元素(三种不同的同伦类):环面上平庸围道(可以收缩成一点),它们不影响同伦群。环面上的非平庸围道有两种:一种是围绕大环的,一种是围绕小环的。两种非平庸围道都服从整数的加法而成群,是为Z群(整数群)。因此环面的一阶同伦群为:Z Z。环面的所有高阶同伦群(大于等于2阶)均为平庸(仅含单位)。

看官不妨算一下中间挖掉两个小圆的三角板的一阶同伦群。

每本拓扑学书都有一大章讲同伦群,一般要花几十页篇幅。凭我的经验,学习效果都远远不如我5到10分钟的解释。写成文字就是上面几行。很多学生学完拓扑学还是不知道算简单形状的同伦群,就是因为教材上的那种写法是以最错乱的方式写的。

休息亭:基本群。它就是一阶同伦群。也就是以一维围道为同伦类构成的群。基本群之所以重要,除它能描述二维洞以外,它与Poincare猜想之关连可能是最重要的原因。Poincare猜想是說,与球面S^{n}同伦的 n 维拓扑流形一定同胚于 S^{n} 。对三维流形(Poincare猜想原始版的流形),可以表成:如果一个三维流形的基本群与三维球面的一样,则这个三维流形就是一个三维球面(拓扑等价或同胚)。很奇怪这个如此"地道的拓扑学"猜想最后竟然不是用拓扑学方法证明的。

同伦群直观,又是Abel的,是流形分析的一个好工具,也有一些美丽的定理帮我们减少计算。例如,Bott的一个伟大发现是,正交群的同伦群有周期性。这个我们后面还要比较仔细地讲。但一般而言,流形的同伦群计算并没有一个可以依循的通用演算步骤,因而可能很复杂甚至没办法算。像一般n维球面的同伦群问题还没有解决。因此,为了描述流形的组成,还需要别的工具。

欧拉示性数催生的另一个伟大概念是同调群。现在同调已是一个容易导致混乱的词,因为有十几种不一样的东东都打着同调这个旗号。当然从本质上讲,所有的同调有一些共性:就是都对应一个叫同调群的Abel群。基本元素为链,闭链,边缘链(与之对偶的为上链,上闭链,上边缘链)。实际情况中,我们一般通过上下文可以得知用的是哪种同调。

请您先登陆,再发跟帖!