赫兹力学:力代表了质量在其上按测地线运动的多维的曲面的弯曲 (图)


此式和高斯的公式除去mk=1和Xk=0之外还有一个情况不同,即对加速度的平方要从1到N取和。N是对于应于赫兹力学中替代力的单位质量和约束的某个数。 接着赫兹又引入对于力学基本原理几何化这一任务至关重要的概念,即系统所经历轨迹之曲率K及长度元ds。轨迹的长度元ds是和引入所论系统的单位质量的轨迹的长度元dxk以二次式联系在一起 加速度 ,被xk对ds的二阶导数所代替,赫兹根据拘束的量度Z的高斯表示式得到下式: 此时所用的其它变换就不讲了,这里K(确切地说是k的平方根)就是轨迹的曲率。这个由Z所得到的量,对实际运动应取最小值即: δK=0 当然“元长”和“曲率”表示式的意义是N维的,它们由相应的N维几何所决定,而且还是N维欧氏几何。因为路径元ds2是作为dxk的平方和而被定义的,即ds2=dx12+dx22+…+dxN2。 从历史观点看赫兹力学的多维几何学的特征指出了一个重要的情况,赫兹并没有成功地把力学归结为三维空间中(那怕是隐蔽的质量)运动的动理学图景,他得到了多维的弯曲的空间,这件事最终指出了力的不可排除性,力代表了质量在其上按测地线运动的多维的曲面的弯曲。 按照赫兹的话来说,在提出质点系及其运动的几何表象时很容易看出,最小作用原理实质上就是几何原理“而这一原理的建立及发展可以完全独立于力学,并且也看出不出该原理同力学中所用的另外一些几何知识有更紧密的联系。”在对这种观念的发展中,赫兹又提出了一个结论,最直路径和测地线相一致。每条测地线也就是质点最直运动的一种形式,在多维空间中则是质点系的一种最捷运动形式。不过赫兹预先申明:测地线并不永远反映最捷路径。只有当运动质点或质点系的位置足够接近时测地线方能和最捷路径相一致。 上述赫兹和十九世纪后半叶某些其他物理学家的观念具有重要的历史意义。数学几何化,对照变分原理的几何化和多维几何的关系可以看出,对古典力学进行综合总结是如何为相对论准备了概念和方法。这件事不仅阐明变分原理的逻辑结构,同时也阐明了它的历史作用。到十九世纪末对力学变分原理几何化的尝试几乎没有停止。在一定程度上,赫兹那种用多维空间的点代表动力学系统的观点开始起着很重要的作用。在这种情况下,力场就要由被弯曲的,破坏其欧几里德性质的多维空间所表示。这样一来就可以把系统看成是自由的,力可以用约束取代,而约束则看成是多维空间的弯曲。系统从一个状态到另一状态的变化认为是某个点在测地线上运动。这样,对系统在力场中的运动来说惯性定律和变分原理间的区别就消失了。或者更确切地说这种区别就变成“平直”的多维空间和弯曲的多维空间之间纯属几何上的区别了。 后来的广义相对论实现这个纲领。广义相对论仅仅把引力场几何化。
请您先登陆,再发跟帖!