波动形式的引入只是一种中间状态,整个逻辑出发于粒子态,终结于测量的物理量。波动只是中间的数学手段而已。
还有,位置不确定和静止不矛盾。位置不确定说的是你不知道它静止在什么地方,但是它是静止的。对于无数个粒子统计平均后,你会发现这些粒子均匀分布在空间中。这来自量子力学的基本原理。这种效应只有在极其微观才能发现。过度到经典的时候,你不能找到这么一个动量非常精确的平面波,那么你也就可能找到一个位置不那么弥散的准静止粒子,同理,对于delta(x)的情况,经典的情况是你不可能找到一个delta(x)的粒子(位置测量没那么精确)比如可能是一个高斯波包,那么粒子被限定在一个小范围内,同时也允许你测量它的动量,可能也是一个中心在0的高斯波包,那么就是说你能在一定精度内看见一个准静止,准固定位置的粒子,这就是我们的日常生活。
实际上,delta《-》exp(-ipx)是2种极端精确的情况。只有在微观尺度下,才能看见这种极端精确的现象。
位置不确定和静止不矛盾。位置不确定说的是你不知道它静止在什么地方,但是它是静止的。对于无数个粒子统计平均后,你会发现这些粒子均匀
回答: 量子力学中由平面波和束缚态所构成的希尔伯特空间 一维束缚态的一般性质(能级分立,无简并,基态无节点,能级随节点数增加) ...
由 marketreflections
于 2010-11-09 16:14:59
所有跟帖:
•
经典的时候,你不能找到这么一个动量非常精确的平面波,那么你也就可能找到一个位置不那么弥散的准静止粒子,同理,对于delta(x)
-marketreflections-
♂
(387 bytes)
()
11/09/2010 postreply
17:34:21