粒子,但是它出现在一定空间,一定时间,一定动量区间的由概率描述,其概率分布图样表现成波动的外观。粒子沿经典的直线行走,是因为在当

作者:bellbasis 回复日期:2010-07-18 05:43:08 

  说下我的看法,希望对楼主有帮助。
  首先你要理解概率。
  
  1对于粒子,你仍然可以理解成点粒子,但是它出现在一定空间,一定时间,一定动量区间的由概率描述,其概率分布图样表现成波动的外观。粒子沿经典的直线行走,是因为在当前的相互作用下,沿其他路径行走的概率几乎为0。(路径积分的一种解释是走其他路径的概率都干涉相消了)。
  
  2粒子干涉的时候,实际上是粒子出现的概率分布改变了。
  
  3数学上说,粒子由一个抽象的态来描述|phi>, 当我们需要讨论粒子的空间波函数的时候,作用左矢 当我们需要讨论动量分布的时候,作用左矢

表征动量分布。所以粒子的空间分布,动量分布,都是由一个态在一种观测下的投影。表示这个投影的函数,就是描述粒子这种概率分布形状的函数(这个函数是复函数,实际上观测的概率分布是要求绝对值平方的)
  
  4,没有相互作用的时候,空间波函数的解是平面波(这是理想状况。实际上任何粒子都是平面波的叠加)有相互作用的时候,可以是共振态,很多短寿命的粒子都是共振态,就是出现极短的时间后,这种特殊的粒子就消失了(衰变成其他相对稳定的粒子)。
  
  5,你只要着重理解概率分布就可以了,它不能预言每个粒子的行为,但是能预言大量粒子的统计行为。而不需要去理解具体一个粒子是如何波动的。

请您先登陆,再发跟帖!