有电就有磁,磁矩: 粒子自旋通常都会使它带有磁矩,这样它就像一块小磁铁,在有梯度的磁场中它就会受力偏转(打到接收屏上后一般都明显

粒子的自旋编辑本段回目录是粒子固有的角动量,是其内禀的属性,每种粒子都有其固定的大小不会改变。在数值上,粒子的自旋角动量S=[s(s+1)]^(1/2)h'(其中s是自旋量子数,电子质子中子的s=1/2,光子的s=1,介子的s=0;h'=h/(2π),h是普朗克常数)。s是整数还是半整数对粒子的统计性影响很大,著名的泡利不相容原理本质上就是s为半整数的粒子遵循费米-狄拉克统计。
粒子自旋通常都会使它带有磁矩,这样它就像一块小磁铁,在有梯度的磁场中它就会受力偏转(打到接收屏上后一般都明显地分为上下两条曲线,不是连续的一片)。这应该属于间接测自旋吧。自旋不仅在大小上是固定不变的,它在空间的任意方向上的投影的大小也只能取两个固定的数值——±sh'。这两点都与宏观物体的旋转大不相同,后者的角动量不论是总的大小还是它在某方向上投影的大小都是连续可变的,而粒子则是固定的或量子化的。由于粒子没有“形状”和“大小”,其“自转线速度”和“自转角速度”都是没有意义的。
粒子的自旋是除了它的三维外部空间的自由度以外的内部空间的第四个自由度,这个自由度上只有±sh'这两个分立的取值。不像空间坐标那样可以连续取值。最初是实验逼得人们认识到这一点的,后来狄拉克构建了著名的狄拉克方程,这是一个关于自由带电粒子的满足狭义相对论要求——在洛仑兹变换下不变的波动方程,它自动给出了电子的自旋及其分量的分立取值。

请您先登陆,再发跟帖!