breakout is d函数源脉冲,新生事物,consolidation 就是牛顿保守场运动了
下册(二)
定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分都可以概率为一种类型的积分,从物理意义上来理解是某个空间区域(直线段、平面区域、立体区域、曲线段、曲面区域)的质量,其中被积元可看作区域的微小单元,被积函数则是该微小单元的密度
这些积分最终都是转化成定积分来计算
第二类曲线积分的物理意义是变力做功(或速度环量),第二类曲面积分的物理意义是流量
在研究上述七类积分的过程中,发现其实被积函数都是空间位置点的函数,于是把这种以空间位置作为自变量的函数称为场函数
场函数有标量场和向量场,一个向量场相当于三个标量场
场函数在一点的变化情况由方向导数给出,而方向导数最大的方向,称为梯度方向。梯度是一个向量,任何方向的方向导数,都是梯度在这个方向上的投影,所以梯度的模是方向导数的最大值
梯度方向是函数变化最快的方向,等位面方向是函数无变化的方向,这两者垂直
梯度实际上一个场函数不均匀性的量度
梯度运算把一个标量场变成向量场
一条空间曲线在某点的切向量,便是该点处的曲线微元向量,有三个分量,它建立了第一类曲线积分与第二类曲线积分的联系
一张空间曲面在某点的法向量,便是该点处的曲面微元向量,有三个分量,它建立了第一类曲面积分和第二类曲面积分的联系
物体在一点处的相对体积变化率由该点处的速度场决定,其值为速度场的散度
散度运算把向量场变成标量场
散度为零的场称为无源场
高斯定理的物理意义:对散度在空间区域进行体积分,结果应该是这个空间区域的体积变化率,同时这种体积变化也可看成是在边界上的流量造成的,故两者应该相等。即高斯定理把一个速度场在边界上的积分与速度场的散度在该边界所围的闭区域上的体积分联系起来
无源场的体积变化为零,这是容易理解的,相当于既无损失又无补充
物体在一点处的旋转情况由该点处的速度场决定,其值为速度场的旋度
旋度运算把向量场变成向量场
旋度为零的场称为无旋场
斯托克斯定理的物理意义:对旋度在空间曲面进行第二类曲面积分,结果应该表示的是这个曲面的旋转快慢程度,同时这种旋转也可看成是边界上的速度环量造成的,故两者应该相等。即斯托克斯定理把一个速度场在边界上形成的环量与该边界所围的曲面的第二类曲面积分联系起来。该解释是从速度环量的角度出发得到的,比高斯定理要难,不强求掌握。
无旋场的速度环量为零,这相当于一个区域没有旋转效应,这是容易理解的
格林定理是斯托克斯定理的平面情形
进一步考察无旋场的性质
旋度为零,相当于对旋度作的第二类曲面积分为零——即等号后边的第二类曲线积分为零,相当于该力场围绕一闭合空间曲线作做的功为零——即从该闭合曲线上任选一点出发,积分与路径无关——相当于所得到的曲线积分结果只于终点的选择有关,与路径无关,可看成终点的函数,这是一个场函数(空间位置的函数),称为势函数——所得的势函数的梯度正好就是原来的力场——因为力场函数是连续的,所以势函数有全微分
简单的概括起来就是:无旋场——积分与路径无关——梯度场——有势场——全微分
要注意以上这些说法之间的等价性
三定理(Gauss Stokes Green)的向量形式和分量形式都要熟悉
以空间位置作为自变量的函数称为场函数 梯度实际上一个场函数不均匀性的量度
回答: 在经典场论中,矢量场的通量和环流描述的是场在一定空域范围内的整体行为,而散度和旋度则着眼于考察场在空间任意点及其邻域的变化规律
由 marketreflections
于 2010-03-21 09:04:06