这个实验很清楚说明量子缠绕是什么

Measurements on an entangled state[edit]

We have a source that emits electron–positron pairs, with the electron sent to destination A, where there is an observer named Alice, and the positron sent to destination B, where there is an observer named Bob. According to quantum mechanics, we can arrange our source so that each emitted pair occupies a quantum state called a spin singlet. The particles are thus said to be entangled. This can be viewed as a quantum superposition of two states, which we call state I and state II. In state I, the electron has spin pointing upward along the z-axis (+z) and the positron has spin pointing downward along the z-axis (−z). In state II, the electron has spin −z and the positron has spin +z. Because it is in a superposition of states it is impossible without measuring to know the definite state of spin of either particle in the spin singlet.[16]:421–422

 
The EPR thought experiment, performed with electron–positron pairs. A source (center) sends particles toward two observers, electrons to Alice (left) and positrons to Bob (right), who can perform spin measurements.

Alice now measures the spin along the z-axis. She can obtain one of two possible outcomes: +z or −z. Suppose she gets +z. According to the Copenhagen interpretation of quantum mechanics, the quantum state of the system collapses into state I. The quantum state determines the probable outcomes of any measurement performed on the system. In this case, if Bob subsequently measures spin along the z-axis, there is 100% probability that he will obtain −z. Similarly, if Alice gets −z, Bob will get +z.

There is, of course, nothing special about choosing the z-axis: according to quantum mechanics the spin singlet state may equally well be expressed as a superposition of spin states pointing in the x direction.[17]:318 Suppose that Alice and Bob had decided to measure spin along the x-axis. We'll call these states Ia and IIa. In state Ia, Alice's electron has spin +x and Bob's positron has spin −x. In state IIa, Alice's electron has spin −x and Bob's positron has spin +x. Therefore, if Alice measures +x, the system 'collapses' into state Ia, and Bob will get −x. If Alice measures −x, the system collapses into state IIa, and Bob will get +x.

Whatever axis their spins are measured along, they are always found to be opposite. This can only be explained if the particles are linked in some way. Either they were created with a definite (opposite) spin about every axis—a "hidden variable" argument—or they are linked so that one electron "feels" which axis the other is having its spin measured along, and becomes its opposite about that one axis—an "entanglement" argument. Moreover, if the two particles have their spins measured about different axes, once the electron's spin has been measured about the x-axis (and the positron's spin about the x-axis deduced), the positron's spin about the z-axis will no longer be certain, as if (a) it knows that the measurement has taken place, or (b) it has a definite spin already, about a second axis—a hidden variable. However, it turns out that the predictions of Quantum Mechanics, which have been confirmed by experiment, cannot be explained by any local hidden variable theory. This is demonstrated in Bell's theorem.[18]

In quantum mechanics, the x-spin and z-spin are "incompatible observables", meaning the Heisenberg uncertainty principle applies to alternating measurements of them: a quantum state cannot possess a definite value for both of these variables. Suppose Alice measures the z-spin and obtains +z, so that the quantum state collapses into state I. Now, instead of measuring the z-spin as well, Bob measures the x-spin. According to quantum mechanics, when the system is in state I, Bob's x-spin measurement will have a 50% probability of producing +x and a 50% probability of -x. It is impossible to predict which outcome will appear until Bob actually performs the measurement.

Here is the crux of the matter. You might imagine that, when Bob measures the x-spin of his positron, he would get an answer with absolute certainty, since prior to this he hasn't disturbed his particle at all. Bob's positron has a 50% probability of producing +x and a 50% probability of −x—so the outcome is not certain. Bob's positron "knows" that Alice's electron has been measured, and its z-spin detected, and hence B's z-spin has been calculated, but the x-spin of Bob's positron remains uncertain.

Put another way, how does Bob's positron know which way to point if Alice decides (based on information unavailable to Bob) to measure x (i.e., to be the opposite of Alice's electron's spin about the x-axis) and also how to point if Alice measures z, since it is only supposed to know one thing at a time? The Copenhagen interpretation rules that say the wave function "collapses" at the time of measurement, so there must be action at a distance (entanglement) or the positron must know more than it's supposed to know (hidden variables).

Here is the paradox summed up:

It is one thing to say that physical measurement of the first particle's momentum affects uncertainty in its own position, but to say that measuring the first particle's momentum affects the uncertainty in the position of the other is another thing altogether. Einstein, Podolsky and Rosen asked how can the second particle "know" to have precisely defined momentum but uncertain position? Since this implies that one particle is communicating with the other instantaneously across space, i.e., faster than light, this is the "paradox".

Incidentally, Bell used spin as his example, but many types of physical quantities—referred to as "observables" in quantum mechanics—can be used. The EPR paper used momentum for the observable. Experimental realisations of the EPR scenario often use photon polarization, because polarized photons are easy to prepare and measure.

 

请您先登陆,再发跟帖!