Evan Chen (陳誼廷) on WordPress (more)

来源: ca981 2018-02-02 12:40:54 [] [博客] [旧帖] [给我悄悄话] 本文已被阅读: 0 次 (16803 bytes)
回答: 弹琴与中文ca9812018-02-01 06:22:19

 

 

 

https://usamo.wordpress.com/2014/07/27/what-leads-to-success-at-math-contests/

What leads to success at math contests?

I think this is an important question to answer, not the least of reasons being that understanding how to learn is extremely useful both for teaching and learning. [1]

About a year ago [2], I posted my thoughts on what the most important things were in math contest training. Now that I’m done with the IMO I felt I should probably revisit what I had written.

It looks like the main point of my post a year ago was mainly to debunk the idea that specific resources are important. Someone else phrased this pretty well in the replies to the thread

The issue is many people simply ask about how they should prepare for AIME or USAMO without any real question. They simply figure that AOPS has a lot of successful people that excel at both contests, so why not see what they did? Unfortunately, that’s not how it works – that’s what this post is saying. There is no “right” training.

This is so obvious to me now that I’m going to focus more on what I think actually matters. So I now have the following:

  1. Do lots of problems.
  2. Learn some standard tricks.
  3. Do problems which are just above your reach.
  4. Understand the motivation behind solutions to problems you do.
  5. Know when to give up.
  6. Do lots of problems.

Elaboration on the above:

  1. Self-explanatory. I can attest that the Contests section on AoPS suffices.
  2. One should, for example, know what a radical axis is. It may also help to know what harmonic quadrilaterals, Karamata, or Kobayashi is, for example, but increasingly obscure things are increasingly less necessary. This step can be achieved by using books/handouts or doing lots of problems.
  3. Basically, you improve when you do problems that are hard enough to challenge you but reasonable for you to solve. My rule of thumb is that you shouldn’t be confident that you can solve the practice problem, nor confident that you won’t solve it. There should be suspense.

    In my experience, people tend to underestimate themselves — probably my biggest regret was being scared of IMO/USAMO #3’s and #6’s until late in my IMO training, when I finally realized I needed to actually start solving some. I encourage prospective contestants to start earlier.

  4. I think the best phrasing of this is, “how would I train a student to be able to solve this problem?”, something I ask myself a lot. By answering this question you also understand

    a. Which parts of the solution are main ideas and which steps are routine details,
    b. Which parts of the problem are the “hard steps” of the problem,
    c. How one would think of the hard steps of the solution,
    and so on. I usually like to summarize the hard parts of the solution in a few sentences. As an example, “USAMO 2014 #6 is solved by considering the N \times N grid of primes and noting that small primes cannot cover the board adequately”. Or “ELMO 2013 #5 is solved by considering the 1D case, realizing the answer is cn^k, and then generalizing directly to the 3D case”.

    In general, after reading a solution, you should be able to state in a couple sentences all the main ideas of the solution, and basically know how to solve the problem from there.

  5. In 2011, JMO #5 took me two hours. In 2012, the same problem took me 30 seconds and SL 2011 G4 took me two hours. Today, SL 2011 G4 takes me about five minutes and IMO 2011 #6 took me seven hours. It would not have been a good use of my time in 2011 to spend several hundred hours on IMO #6.

    This is in part doing (3) correctly by not doing things way, way over your head and not doing things way below your ability. Regardless you should know when to move on to the next problem. It’s fine to try out really hard problems, just know when more time will not help.

    In the other direction, some students give up too early. You should only give up on a problem after you’ve made no progress for a while, and realize you are unlikely to get any further than you already are. My rule of thumb for olympiads is one or two hours without making progress.

  6. Self-explanatory.

I think the things I mentioned above are at least extremely useful (“necessary” is harder to argue, but I think you could make a case for it). Now is it sufficient? I have no idea.

 
FOOTNOTES
  1. The least of reasons is that people ask me this all the time and I should properly prepare a single generic response.
  2. It’s only been a year? I could have sworn it was two or three.

 

 

 

 

请您先登陆,再发跟帖!

发现Adblock插件

如要继续浏览
请支持本站 请务必在本站关闭/移除任何Adblock

关闭Adblock后 请点击

请参考如何关闭Adblock/Adblock plus

安装Adblock plus用户请点击浏览器图标
选择“Disable on www.wenxuecity.com”

安装Adblock用户请点击图标
选择“don't run on pages on this domain”