试解

来源: 2015-04-20 13:19:14 [旧帖] [给我悄悄话] 本文已被阅读:

x^2/(x+y^2) = x - xy^2/(x+y^2)

原不等式等价于:

xy^2/(x+y^2) + yz^2/(y+z^2) + zx^2/(z+x^2)
因x+y^2 >= 2sqrt(xy^2), 归结于证明

xsqrt(z) + ysqrt(x) + zsqrt(y)
由柯西不等式,

LHS^2
因xz+yx+zy