设P=n(n+1)(n+2)(n+3)=n(n+3)(n+1)(n+2)=(n^2+3n)(n^2+3n+2),令m=n^2+3n, 即P=m(m+2) 所以P介于两个连续正整数的平方数m^2和(m+1)^2之间,即P不可能是一个完全平方数。