Origin of language pt 4
Homo sapiens
Anatomically modern humans first appear in the fossil record 195,000 years ago in Ethiopia. But while they were modern anatomically, the archaeological evidence available leaves little indication that they behaved any differently from the earlier Homo heidelbergensis. They retained the same Acheulean stone tools and hunted less efficiently than did modern humans of the Late Pleistocene.[34] The transition to the more sophisticated Mousterian takes place only about 120,000 years ago, and is shared by both H. sapiens and H. neanderthalensis.
The development of fully modern behavior in H. sapiens, not shared by H. neanderthalensis or any other variety of Homo, is dated to some 70,000 to 50,000 years ago. The development of more sophisticated tools, for the first time constructed out of more than one material (e.g. bone or antler) and sortable into different categories of function (such as projectile points, engraving tools, knife blades, and drilling and piercing tools) are often taken as proof for the presence of fully developed language, assumed to be necessary for the teaching of the processes of manufacture to offspring.[32][35]
The greatest step[dubious ] in language evolution would have been the progression from primitive, pidgin-like communication to a creole-like language with all the grammar and syntax of modern languages.[19] Some scholars believe that this step could only have been accomplished with some biological change to the brain, such as a mutation. It has been suggested that a gene such as FOXP2 may have undergone a mutation allowing humans to communicate.[dubious ] However, recent genetic studies have shown that Neandertals shared the same FOXP2 allele with H. sapiens.[36] It hence does not have a mutation unique to H. sapiens. Instead, it indicates this genetic change predates the Neandertal - H. sapiens split. There is still considerable debate as to whether language developed gradually over thousands of years or whether it appeared suddenly.
The Broca's and Wernicke's areas of the primate brain also appear in the human brain, the first area being involved in many cognitive and perceptual tasks, the latter lending to language skills. The same circuits discussed in the primates' brain stem and limbic system control non-verbal sounds in humans (laughing, crying, etc.), which suggests that the human language center is a modification of neural circuits common to all primates. This modification and its skill for linguistic communication seem to be unique to humans, which implies that the language organ derived after the human lineage split from the primate (chimps and bonobos) lineage. Plainly stated, spoken language is a modification of the larynx that is unique to humans.[16]
According to the Out of Africa hypothesis, around 50,000 years ago[37] a group of humans left Africa and proceeded to inhabit the rest of the world, including Australia and the Americas, which had never been populated by archaic hominids. Some scientists[38] believe that Homo sapiens did not leave Africa before that, because they had not yet attained modern cognition and language, and consequently lacked the skills or the numbers required to migrate. However, given the fact that Homo erectus managed to leave the continent much earlier (without extensive use of language, sophisticated tools, nor anatomical modernity), the reasons why anatomically modern humans remained in Africa for such a long period remain unclear.
[edit] Communication, speech and language
Many scientists make a distinction between speech and language. They believe that language (as a context for communication, and primarily as a cognitive ability to form concepts and communicate them) was developed earlier in human evolution, and speech (one of the forms of communication) was developed much later. The presence of speech (without language) is also possible in some cases of human mental retardation or learning disabilities (like Specific Language Impairment) and is also known in the animal kingdom. For instance, talking birds are able to imitate human speech with varying ability. However, this ability to mimic human sounds is very different from the acquisition of syntax. Likewise, the production of speech sounds is not necessary for language use, as evidenced by modern sign languages, which use manual symbols and facial grammar as a basis for language rather than speech. Morse coding system, and the system of the Marine Signal Flags are other forms of communication, but not necessarily language.
It has been claimed that the key feature distinguishing human language from non-human communication systems is recursion.[39] This linguistic sense of the term recursion involves the insertion (or embedding) of phrases within phrases as exhibited in the complex sentence "(The man with the old crusty eyepatch he wore since WWII) walked to (the store that burned down before his uncle had put down the downpayment)", or the less informative "The man walked to the store which the man who walked to the store walked to". This claim is still held by many researchers, but some evidence has been proposed which calls it into question. Experimenters at the University of Chicago found that starlings (Sturnus vulgaris) can acquire a grammar with recursion.[40] The experimenters trained starlings on a context-free, center-embedding grammar. They report that starlings were able to recognize utterances that were grammatically acceptable and reject those that were not. Moreover, Daniel Everett claims that Pirahã is a human language that does not exhibit recursion.[41]
It has been also suggested that the key feature of human language is the ability to ask questions.[42] Some animals (notably bonobos and chimpanzees), who learned to communicate with their human trainers (using mostly visual forms of communication), demonstrated that they have the ability to correctly respond to complex questions and requests, but they failed to ask even the simplest questions themselves. Conversely, human children are able to ask their first questions (using only question intonation) at the babbling period of their development, long before they start using syntactic structures. It is crucially important that although babies from different cultures acquire native languages from their social environment, all languages of the world without exception – tonal, non-tonal, intonational and accented – use similar rising “question intonation” for yes-no questions.[43][44] This fact is a strong proof of the universality of question intonation. It should also be noted that arbitrary expressions of joyful excitement, regardless of the language or nationality of the speaker, generally have falling intonation and this may also be universal.