其中 E 是能量,p 是動量,m 是靜質量,c 是光速符號, ^4 表示是四次方,U(r) 是帶電粒子在外場中的勢能。
我們很容易證明(此處略去具體的證明),能量 E 與波函數 Ψ 對時間 t 的偏微分有直接關系(線性的關系),而動量 p 則與波函數 Ψ 對空間 x 的偏微分有直接關系。還不單如此,而且一次方的 E 或 p,與波函數 Ψ 的一階偏微分相關,而二次的 E 或 p,又正好與波函數 Ψ 的二階偏微分相關。這樣,上述兩種「能量與動量的關系式」,就正好對應了前面文中所討論過的兩種不同的組合。
從數學的角度去比較那兩個動量-能量關系式,你就很容易看出,它們的差別只在能量 E 的方次上面。這兩個表達式的能量與動量的方次,是既有相同處,亦有不同處。相同的是那兩個式子右邊的動量 p 都是二次方的;而不同的只在能量 E 上面:Schrodinger 方程所利用的能量-動量式子中的左邊的能量 E 是呈一次方的( E = p² /2m),而 Gorden-Klein 方程所用的式子中的左邊的能量 E 卻是呈二次方的( E² = m² *c^4 + p² *c² )。
(a + b)² = (a + b)(a + b) = aa + ab + ba + bb = a² + ab + ba + b² (1.9)
就是說,那一個 2ab 項,原來並不是兩個 ab 加在一起,而是 ab 與 ba 的相加,只是因為初等代數學中的乘法的交換律,所以才有 ab = ba ,從而變成了 2ab。
但那畢竟只是初等代數中的規則,到了矩陣代數中,情況早已不是這樣了,在矩陣代數中,矩陣 A 與 矩陣 B 的乘積是不服從交換律的,就是:
AB ≠ BA ( 我們用 ≠ 表示不等於) AB - BA ≠ 0 AB + BA ≠ 2AB (1.10)
這樣一來,解決的辦法就有了。
狄拉克馬上就想到可以利用矩陣代數來擺脫這一開方困境,既然在矩陣的情況中,矩陣 A 與矩陣 B 的乘積與次序有關,乘積 AB 並不等於 BA,那麼,適當地選取某種系數矩陣 A 與 B,就有可能使得和式 (AB + BA)為零,並且使乘積 AA 與 BB 成為「單位矩陣」,在矩陣代數中,單位矩陣的作用只相當於初等代數中的數字「單位 1 」。