http://krsna.lamost.org/popular/calculus_basic/8.htm
第八章.多元函数积分学
在不同的问题当中,可以对多元函数的积分进行不同的定义,因此,我们需要在不同的问题背景当中来定义不同的积分概念。
二重积分。
二重积分实际上就是对二元函数求定积分,在实际问题当中,需要对二元函数进行求和计算,或者直观地说,涉及到体积的计算与具有在二维区域上的分布的物理量的计算,就需要运用二重积分的概念来进行。
因此我们对二重积分的定义,与对单变量函数的定积分的定义是完全类似的,只是这里的积分区域不是一维的,而是二维平面上的区域。这样通过把积分区域任意划分成只有公共边界的子区域,然后在每一个子区域当中任意取一点,取这点的函数值与该子区域的面积之积,再把所有的这样的乘积加起来,得到一个和式,接下来,就是我们已经很熟悉的极限过程,即使得所有子区域当中面积最大者的面积趋向于0,也就是使得子区域的数目趋向于无穷大,看和式是否存在极限,以及可能的话,这个极限是多少。这就是关于二重积分的可积性问题与二重积分的计算问题。
关于可积性的问题有下面一个简单的定理:
如果函数在一个有界闭区域上有定义并且连续,则这个函数必定在这个区域上可积。
从上面的二重积分概念的说明,可以得到与单变量函数的定积分相类似的几何说明,即被积函数所描述的曲面与其在自变量平面上的积分区域上的投影之间所夹的空间的体积。基于这样的理解,可以很容易得到如下的二重积分的性质