漫谈几何量子化(七)流形
经典相空间一般都是辛空间,从历史角度来说就是可以写下 Hamilton 运动方程的空间。数学上把量子化总结为从一个辛空间出发构造 Hilbert 空间及其上一系列满足 Heisenberg 交换关系的算子的问题。谐振子的例子里,这个辛空间本质上只是一个向量空间,物理学家往往称这种空间为“拓扑平凡的”。数学上非常感兴趣的是,给一个“拓扑非平凡”的辛空间,量子化到底是什么意思。
一类拓扑非平凡的空间都落在一个比较好的范畴中,它们在数学上就叫“流形”。一个 n 维“流形”是一个拓扑空间,它的每个局部在拓扑上都等价于

的开集,就是说,局部上每个点对应到

的一个点,有一组坐标,这就是局部坐标系。两个局部重叠的地方,就有两个局部坐标系,它们相差一个坐标变换。由以上定义,这些坐标变换自然是拓扑等价(即双方连续的一一对应)。如果其中某些坐标变换还是无穷次可微的,而且它们涉及到的局部可以合起来覆盖整个流形,那么这个流形就是“光滑”的。把所有互为光滑变换的局部坐标系都收集起来,它们叫做这个光滑流形的“容许坐标系”。
在光滑流形上,可以谈论“光滑”函数。一个函数如果在一个容许坐标系下是光滑的,那么在另一个重叠的容许坐标系下也光滑,因为坐标变换是光滑的。通常这么叙述这种好处:光滑性不依赖于局部坐标选取。在流形上,与局部坐标选取无关的“概念”,“性质”,和与局部坐标变换相容的“ 量”,才是有几何意义的。这一点,微分几何的创始人 Gauss, Riemann 应该都心里有数。Einstein 在他的物理学里也强调了这一点。
在流形上没有线性结构,不能把两个点加在一起,也不能连接两个点成为一个“向量”。不过在每一点的局部,就好像在欧氏空间一样,可以在这一点对函数“求方向导数”,这种运算是局部函数空间上的线性算子。以它们为模型的整体对象叫做在该点的“切向量”。在局部上还有一个有趣的东西就是函数在一点的“微分”,

以它为模型的整体对象叫做一个“余切向量”(或者仍然叫做微分)。然后顾名思义,一个“光滑切向量场”就是在每一点有一个切向量,以光滑方式依赖于基点。对偶的概念是“微分 1-形式”,即,光滑余切向量场。在局部坐标系下,切向量场和微分 1-形式通常写成

这里用了 Einstein 求和约定。系数都是局部坐标系里的光滑函数(但不是整体的光滑函数,将随坐标变换而变)。
在每一点上,由方向导数和微分组成的多重线性对象,以整体方式定义以后,叫“张量”。张量场跟前面类似。搞数学的喜欢用整体记号,就像上面那个式子一样,把分量和基写在一起,变换局部坐标的时候,基底和分量同时变,而它们的组合不变,从而左边的字母代表一个不依赖于局部坐标系的量;搞物理的喜欢只写出分量而省略基底,这样的记号明显依赖于局部坐标系。
[
本帖最后由 季候风 于 2008-2-5 12:16 编辑 ]