3楼 |
|
|
通常的保守问题中,经典力学正则方程除了满足能量积分外,不满足其它任何解析、一致的积分。庞加莱的一般性结论,实质上是指出,可积系统
科学认识的步伐,走出一条“之”字形路线:“混沌”让位于“规则”——这是牛顿所建立的伟大功绩;而“规则”又产生出新形式的“混沌”。迈出这一步伐的第一人,是伟大的法国科学家庞加莱(1854~1912)。 庞加莱被誉为是“一只脚站在19世纪,一只脚站在20世纪”的跨世纪天才学者,“是最后一位传统科学家,也是第一位现代科学家”。这位蓄胡须、戴眼镜、和蔼可亲、不修边幅、带着心不在焉的糊涂外表的沉思者,却是一位科学上的集大成者,在数学、天体力学、物理学和科学哲学等领域,都做出了杰出的贡献。他通晓他的时代的全部数学,在每一个重要分支里都做出了富有创造性的工作。这使他成为世界数学界无可争辩的领袖。正是这位科学巨擘,在确定论思想浓重笼罩着全部科学界的时候,却把智慧的眼光投向早被驱赶出科学园地的混沌深渊。他是在研究天体力学,特别是“三体问题”时发现混沌的。1887年,瑞典国王奥斯卡二世(1829~1907)悬赏2500克朗,征求天文学中一个重要问题的答案。这个问题就是“太阳系是稳定的吗?”其实这是牛顿本人早就提出来的一个老问题了。牛顿以当时已观测到的木星和土星运动的不规则性以及彗星以极扁的轨道横穿所有行星的公转轨道所可能带来的干扰作用为依据,提出了太阳系的运动可能会陷入紊乱的担心。此后不少科学家都对这个问题进行过探索。直到1784年,拉普拉斯根据万有引力理论证明,太阳系是一个完善的自行调节的机械机构,行星之间的相互影响和彗星等外来天体所造成的摄动,最终都会自行得到改正。所以,太阳系作为一个整体是稳定的,它将无限期地继续做着目前的周期运动。但是看来,拉普拉斯的答案并没有消除科学界的这个疑虑,没有阻止100年后瑞典国王的悬赏征文。 庞加莱自然向奥斯卡国王的难题发起了进攻。但是这个问题是太困难了,它涉及到了怎样研究复杂动力系统的稳定性这个深刻的问题。连庞加莱这样的天才学者,也未能彻底攻克它。但是,他却为了做这一工作而创立了一个新的数学分支——拓扑学,并大大推进了人们对这个历史难题的认识。他因此获得了这项奖金。 在太阳系中,包含着十多个比月球大的巨大天体,这是造成解题困难的根本原因。如果太阳系仅仅由太阳和地球组成,这就是一个“二体系统”,问题则很简单,牛顿早已完全解决了它们的运动问题。它们的运动是简单而规则的周期运动,太阳和地球将围绕一个公共质心、以一年为周期永远运转下去;或者稍做简化地说,地球将以太阳为一个焦点,周而复始地沿椭圆轨道绕转。然而,当增加一个相当大的天体后,这就成了一个“三体系统”,它们的运动问题就大大复杂化了,要彻底解决这个问题,几乎是不可能的。对短时间内的运动状态,可以用数值计算的方法来确定;但是由于根据牛顿力学所列出的方程组不能解析地求解,所以系统长时间的运动状态是无法确定的。 为了减少解决“三体问题”的难度,庞加莱着眼于美国数学家希尔(Hill,George William 1838~1914)提出的一个极为简化的三体系统,即“希尔约化模型”。三体中有一个物体的质量非常小,它对其它两个天体不产生引力作用,就像由海王星、冥王星和一粒星际尘埃组成的一个宇宙体系一样。这两颗行星就像一个“二体系统”一样绕着它们的公共质心做周期运动;但这颗尘埃却受到两颗行星万有引力的作用,在两颗行星共同形成的旋转着的引力场中做复杂的轨道运动。这种运动不可能是周期的,也不可能是简单的,看上去简直是乱糟糟一团(图2)。 |
|
|
4楼 |
|
|
5楼 |
|
|