早期医学对哺乳动物的认识指出,健康或生病的状态与温度这个参量有关联。许多动物所表现的一些特征可以说也就是对其他动物的情绪状态:狗

另一些约束。简言之,他创造出运用一种理想化实验情形的简化的数学模型。当然,甚至物理定律的天体模型也只考虑了几个参量,诸如行星的角速度和位置,并忽略了其他多种多样的约束条件(例如大球的密度、质量和摩擦)。从现代的观点看,甚至前苏格拉底哲学家,通过选择某些主导“参量”(例如水、火和土),也提出了关于自然界的复杂动力学的定性“模型”。
  一般地说,观测一个系统,无论它是物理的生物的还是社会的,都可以从不同状态来进行。为观测现象建立模型的策略,自古以来可能已有变化,但是建模活动的目标在某种意义上却是相同的:被观测系统中状态变化的动力学。显然,真实的状态不可能仅仅用几个可观测参量来描述,但是却假定这是可以做到的。在早期的天文学和力学中,这是数学理想化的第一步,并导致了一组理想状态的几何模型,这在今天称作模型的态空间。前苏格拉底的自然“模型”不同于现代的模型,不仅仅在于数学化和可观测性,还在于真实系统的实际状态与几何模型点之间的关系被认为是本体论上所需要的,而在现代系统中它却是由于理论、预测等等缘故而保留下来的虚构。
  最简单的框架是一个参量的模型。早期医学对哺乳动物的认识指出,健康或生病的状态与温度这个参量有关联。许多动物所表现的一些特征可以说也就是对其他动物的情绪状态:狗的耳朵状态相应于它的害怕状态,而犬齿暴露程度则是其愤怒程度的定性“参量”。把两者组合起来,就更恰当地代表了狗的情绪状态。行星的状态在中世纪可用其角速度和场所来定义。其他系统的状态可能需要两种以上的特征来定义(例如用温度、血压和脉搏速率来表示哺乳动物的健康状态)。
  在任何情况下,如果这些参量是用数值显示的,那么相应的状态空间就可以用几何空间来表示。因此,二维状态空间中的单个点所表示的两个数值参量的值,就可以表示在欧几里得几何平面上。系统状态的实际变化是可观测的,可以表示成该态空间的一条曲线。如果这条曲线上的每一个点带着记录下观测时间的标志,那么我们就获得了该模型的轨迹。有时,引进另一个时间坐标,用其时间序列来代表参量的变化,这也是很有用的。这种表示叫做轨迹图

请您先登陆,再发跟帖!