kernel理论指出,对于一个空间,只要定义一个正定核(positive kernel)——一个符合正定条件的二元运算,就必然存

  1. http://dahua.spaces.live.com/

  2.  

  3. 接下来的一个重要的代数结构,就是内积(inner product)结构。内积结构一旦建立,会直接诱导出一种性质良好的度量,就是范数(norm),并且进而诱导出拓扑结构。一般来说,内积需要建立在线性空间的基础上,否则连一个二元运算是否是内积都无法验证。不过,kernel理论指出,对于一个空间,只要定义一个正定核(positive kernel)——一个符合正定条件的二元运算,就必然存在一个希尔伯特空间,其内积运算等效于核运算。这个结论的重要意义在于,我们可以绕开线性空间,通过首先定义kernel的方式,诱导出一个线性空间(叫做再生核希尔伯特空间 Reproducing Kernel Hilbert Space),从而我们就自然获得我们所需要的度量结构和线性运算结构。这是kernel theory的基础。

    在很多教科书中,以二次核为例子,把二维空间变成三维,然后告诉大家kernel用于升维。对于这种说法,我一直认为在一定程度上是误导的。事实上,kernel的最首要意义是内积的建立(或者改造),从而诱导出更利于表达的度量和运算结构。对于一个问题而言,选择一个切合问题的kernel比起关注“升维”来得更为重要。

    kernel被视为非线性化的重要手段,用于处理非高斯的数据分布。这是有道理的。通过nonlinear kernel改造的内积空间,其结构和原空间的结构确实不是线性关联,从这个意义上说,它实施了非线性化。不过,我们还应该明白,它的最终目标还是要回到线性空间,新的内积空间仍旧是一个线性空间,它一旦建立,其后的运算都是线性的,因此,kernel的使用就是为了寻求一个新的线性空间,使得线性运算更加合理——非线性化的改造最终仍旧是要为线性运算服务。

    值得一提的是,kernelization本质上说还是一种嵌入过程:对于一个空间先建立内积结构,并且以保持内积结构不变的方式嵌入到一个高维的线性空间,从而继承其线性运算体系。

请您先登陆,再发跟帖!