作者:醉萧郎 回复日期:2005-11-24 1:34:24
我记得看过一本书讲4维空间还是比较特殊的,微分几何里面一些结论在4维空间里是否成立有待证明。班门弄斧,见笑了
你这个问题还是很有价值的,我先抛转引玉。一般来说,微分几何的结论对于黎曼和广义黎曼流形都是成立的。
4维空间是特殊的空间,那是Jones在198×(不记得了)证明的一个著名的定理。只有4维空间中才存在无限多个拓扑非平庸的微分结构(好像是这样的,有兴趣可以翻翻书!)由此定理,物理学家很是忙碌了一阵,90年代初,Chern-Simons时空规范理论是物理学家最钟情的理论(主要还是Witten惹的祸,86年的文章吧,看过,没看懂,放弃,呵呵)。关于这个Jones的定理,倒是需要一些学数学的人来普及普及,不如另开一个帖子吧,老实说,我也不是很了解。用倒是用到过Chern-Simons规范理论,但是那是照葫芦画瓢,自己也不是很清楚。哪位学微分几何的指教指教?
-----------------------------------------------------
s0(n)群中,只有so(4)不是单李群。也只有在4维之上,霍奇算子能把曲率映为曲率。也只有在4维欧空间之上,唐纳森发现了无穷多微分结构。loop量子引力被人诟病,因为她不能回答为什么时空是4维的,但上帝用数学来回答。
在19世纪到20世纪,哈密顿之后,物理学家洛仑次写了厚厚的《电子论》,三大本。当时还没有发现电子。这是历史上一个伟大的事情,虽然洛仑次不是最出色的,但人们应该注意到,在洛仑次力公式
f=qE+vX B
出现了点乘与叉乘。
这个是一个经典电动力学里的假设,但可以相信,这个假设说明,在四元数中,结合方法必须既有点乘又有叉乘.这个假设是实验证实的,所以洛仑次是伟大的.
电磁理论与四元数的结合是自然的,天然的,同时是微妙的。因为电磁场在4维时空才是天然的。
我们知道一个3矢量与一个3矢量的叉乘,但不知道如何把这种叉乘推到高维。能不能做到呢?? Grasmann(1809-1877)生于德国Stettin(今属波兰),曾经在柏林大学攻读神学,哥廷根大学没落之后,柏林大学似乎已经成为德国最出色的大学.格拉斯曼大学毕业后长期在家乡中学任教,业余从事科学研究,成为梵文权威和数学家。1844年他了发表《线性扩张论》。建立了所谓的“扩张的量”(即有n个分量的超复数)的概念和运算法则,其中包括了非交换乘法和n维空间的重要思想,形成了张量理论的初步思想。
grassmann代数又叫外代数,超对称代数就是由poincare代数与外代数组成的。
clifford代数当然是数学家讲旋量必须的出发点之一,数学家不讲这个而谈旋量显得有点脱离潮流。
一个很直接的看法是,n维矢量空间上的外代数和n维矢量空间(含内积)上面的clifford代数具有相同维数,全部是2的n次方维。这样的话,作为有限维的矢量空间,它们是同构的。但作为代数,它们不是一样的事情。clifford比外代数复杂一点,或者说,前者是后者的量子化或者畸变。
总的来说,外代数很重要,因为外微分很重要。clifford代数很重要,因为我们有复数,有四元数,我们希望推广到更加高的维数,但一般的代数,到了8元数就终结了,要找新的代数,只能去发现clifford代数了。因为它作用在旋量之上,所以在下面的章节可以漫漫谈来。
旋量由此产生,最早起源于嘉当。旋量与群论关系密切,但也可以说与clifford代数关系密切。比如物理学家比如咯兴林的《高等量子力学》把dirac矩阵乘起来的16个矩阵叫做dirac群,其实这就是一个clifford代数。
旋量具体来说就是N维度规空间上的正交群的表示。大家最熟悉的莫过于三维欧氏空间的转动群SO(3)的表示了,其最低维的双值表示便是二维的旋量表示,这个是转动群的通用覆盖群的SU(2)单值表示。把这个结果推广到一般维数的空间。其结果是:最低维旋量的表示维数是:2^{n/2-1} 当n是偶数的时候;
2^{n/2-1/2} 当n是奇数的时候。
当维数为六时,SO(2,4) 的表示便是扭量。这是从抽象的代数语言来说扭量,扭量如何在时空点和光线空间实现对应呢??
对于的关键在于,我们把四矢量(t,x,y,z)用pauli 矩阵写出来,或者说,用四元数写出来。写出来后是一个矩阵。这个矩阵,记做N。
那么,一个扭量(z1,z2,z3,z4)满足如下扭量方程。
z1 N N Z3
z2 = N N Z4