运动常数
一个可积动力系统可能有能量以外的运动常数。这样的运动常数在泊松括号下将与哈密顿量交换。假设某个函数 f(p,q) 是一个运动常数。这意味着如果 p(t),q(t) 是哈密顿运动方程的一条轨迹或解,则沿着轨迹有 。这样我们有
这里中间步骤利用运动方程得到。这个方程称为刘维尔方程。刘维尔定理描述了如上给出的一个测度(或相空间上分布函数)的时间演化。
为了使一个哈密顿系统完全可积,所有的运动常数必须互相对合