光滑,解析函数必然调和

来源: 2011-01-12 10:10:23 [博客] [旧帖] [给我悄悄话] 本文已被阅读:

光滑和解析有什么区别
MariNe__
35位粉丝
1楼

rt

2010-12-6 16:34 回复
码农
灌水四人组之蛋
483位粉丝
2楼

楼主应该问的是全纯和解析的区别吧。。。。

2010-12-6 16:44 回复

zhucenannannan
3楼

问的是复变函数吗?

这条留言是通过手机发表的,我也要用手机发表留言! 2010-12-6 17:22 回复

您好_您好吗
130位粉丝
4楼

光滑:一阶导数存在连续
解析:幂级数收敛于自身
全纯:全平面解析

2010-12-6 18:24 回复

MariNe__
35位粉丝
5楼

我不太明白中文术语……

这么说,我想问的是smooth function,也就是C^{infty},和holomorphic/analytic function有什么区别, 第一个是无限次可导, 第二个是无限次可导且等于自身的Taylor series.这两个有什么区别?

2010-12-6 18:40 回复

kof9595995
10位粉丝
6楼

回复:5楼

没仔细研究过,不过的确有无限可导但收敛半径是0的函数,譬如
f=exp(-1/x^2) if x!=0
f=0 if x=0


2010-12-6 18:54 回复

您好_您好吗
130位粉丝
7楼

解析必然无穷可微,但无穷可微不一定解析……

我很想知道是否有处处无穷可微,但处处不解析,或者在一个稠密集上不解析的函数……

2010-12-6 19:11 回复

kof9595995
10位粉丝
8楼

回复:7楼

话说你们学数学的都喜欢找pathological的东西,我们学物理的则动不动就假设well-behaved :)


2010-12-6 19:40 回复

MariNe__
35位粉丝
9楼

回复:7楼


在某一个区间上稠密的应该还是可以解决的吧,通过6楼的函数做f-> f(x+1)/2得到新的函数然后与原来的函数相加,就可以得到一个有两个不可解析点的函数,找一个这种可以不断重复下去并使得区间上每一个有理点都变成不解析的平移方法,会得到一个在有理函数级数,因为原函数光滑,构成的新函数级数是一致收敛的,也是光滑的, 进一步,如果稠密集不解析的话不就是处处不解析吗?

具体没仔细验证,粗略的想法

不过在某个稠密集上不解析的话不能推出在整个**上不解析吗?

2010-12-6 19:55 回复

MariNe__
35位粉丝
10楼

回复:6楼


嗯,看了你的例子,我突然想起来张筑生的数学分析新讲里面讲过一个函数的泰勒级数不一定收敛于自身

2010-12-6 19:58 回复

kof9595995
10位粉丝
11楼

回复:10楼

你还在跟踪国内教材啊,精力真旺盛啊

2010-12-6 20:45 回复

MariNe__
35位粉丝
12楼

回复:11楼


没有,那是我第一次学数学分析用的教材,现在忘得差不多了……

2010-12-6 21:00 回复

您好_您好吗
130位粉丝
13楼

回复:9楼
好像是这样,等我再整合下。

2010-12-7 12:18 回复
怪蜀黍
九点圆
164位粉丝
14楼

嗯解析点的集(春哥)合是开集

2010-12-7 12:22 回复

您好_您好吗
130位粉丝
15楼

回复:14楼
头像- -

2010-12-7 12:24 回复

紫幻帝2号
92位粉丝
16楼

回复:14楼
收敛圆上必有奇点
我记得是这样

2010-12-7 12:26 回复

您好_您好吗
130位粉丝
17楼

回复:16楼
忽然想起来好像有一个函数在收敛圆边界有无穷多个奇点?

2010-12-7 12:28 回复
天然呆
梅西前女友
527位粉丝
18楼

在一个点解析不叫解析

2010-12-7 12:50 回复
怪蜀黍
九点圆
164位粉丝
19楼

为毛

2010-12-7 12:54 回复
天然呆
梅西前女友
527位粉丝
20楼

参见解析定义

2010-12-7 13:05 回复
怪蜀黍
九点圆
164位粉丝
21楼

在一点解析的定义是在该点一邻域内等于其taylor级数

2010-12-7 13:07 回复

MariNe__
35位粉丝
22楼

回复:21楼


呃……

难道有只在一个点解析的函数吗?

2010-12-8 15:17 回复
贴吧公益
臼齿动动
16位粉丝
23楼

回复:7楼

好像没有,你再去看一下复变函数的解析的定义。

2010-12-8 19:31 回复

MariNe__
35位粉丝
24楼

回复:23楼


所以我现在想知道两种定义是不是等价的

2010-12-8 20:28 回复

您好_您好吗
130位粉丝
25楼

复解析函数只要在一点邻域内可导即可证明,所以复变函数书籍通常这么定义。

以前觉得实解析函数好像是另类的,不过细想,似乎每个实解析函数都可以自然地延拓成为复解析函数。

2010-12-8 21:45 回复
贴吧公益
臼齿动动
16位粉丝
26楼

回复:24楼

你考虑一下我的看法,光滑的话,可以沿某一方向的,但是解析的定义由于要求是某一领域,记得不太清楚了,好像有个反例还是正例的y=|x|,你看一下吧。这个学的时间太久了,又这么长时间没有去看,说实话复变函数在后来的泛函中虽然一直涉及,但是好像对这些特殊的性质就没有去探讨了,所以长期以往,就模糊了。

2010-12-8 22:01 回复

sleepinglord
13位粉丝
27楼

解析比C无穷强得多,参见复变Cauchy定理,即解析函数在某个范围内部的值完全由其在该范围边界上的某个积分决定。C无穷可做不到这么nb的性质。

2010-12-9 09:20 回复

MariNe__
35位粉丝
28楼

很困惑

复变上如果光滑的话自然就在邻域内可导,也就自然解析了吧……

2010-12-10 17:59 回复

MariNe__
35位粉丝
29楼

回复:26楼


光滑可以沿一个方向? 不明白

|x|既不光滑也不解析啊……

2010-12-10 17:59 回复

您好_您好吗
130位粉丝
30楼

回复:28楼
是的,所以复变函数的教材在定义解析时候不提幂级数,而是用导数在一邻域内存在推出各阶导数存在,并且证明幂级数收敛于它。

回复:27楼
应该说是由边界上的函数值完全决定,而不是其积分完全决定。



另:忽然想起好像看过解析函数必然调和,调和函数必然解析,那这两个概念似乎是一回事……只是角度不同……