对称破缺和戈德斯通(Goldstone)定理 譬如体积这个几何状态参量,它与对称破缺概念的联系,可通过晶体的形成过程加以说明.以
另一种对称性,另一种运动,另一种性质,甚至是另一种宏观体系,另一种数学集合空间,网上易开发这种空间,复空间
对称破缺和戈德斯通(Goldstone)定理
热力学中还存在一些状态参量,如体积、磁矩、电矩和摩尔数等,它们又是如何从对称性分析中产生出来的?回答是它们存在的基础是对称破缺和戈德斯通定理.譬如体积这个几何状态参量,它与对称破缺概念的联系,可通过晶体的形成过程加以说明.以固态的二氧化碳(干冰)晶体为例,在“无限大”的气态CO2中,随温度下降而在某局域形成晶核的过程,从对称性观点看,是系统从一个具有连续的完全对称性的气态转变为一个只有离散的较低对称性的固态的过程.在这类晶核化过程中,系统对称性突然自发地降低,称为系统的对称性的“破缺”.从固体物理学我们知道,晶体的振动模式可用波数k=2π/λ和圆频率ω(k)加以描述.长波模式变为简单的声波,并有线性关系ω=vk,故极端模式是在空间均匀的模式,振动频率趋向于零.此时半波长内就包含很多原胞,它们整体地沿同一方向运动,因此晶体可以近似地看成连续介质,而且具有确定的体积.著名的物理学家P.W.安德森(Anderson)把这种对称破缺系统具有一个激发谱,当波长趋向无穷时,----
同波内,导或不导体,信息,电等物理性质波内分享
频率趋向零的性质概括为戈德斯通定理[4]. 相类似地在一些电极化材料例如HCl晶体中,位于格点上的HCl分子中,氢离子围绕相对大的氯离子转动,形成电偶极矩.在转变温度以上,这些电矩的取向是无序的;转变温度以下,偶极矩取向趋向有序,整个晶体拥有净电矩.晶体
从具有较高对称性的状态自发地降低对称性,转变为电矩具有确定轴取向的较低对称性的状态.根据戈德斯通定理,这种对称破缺必将导致一个波长为无穷时零频率的元激发.在极化晶体中,这类元激发由在净电矩指向附近轴的微小摆动形成的振荡波组成.类似的情况,在居里点附近的铁磁材料中也发生,从而在磁介质热力学中可以引进状态参量总的磁矩.