吉布斯和爱因斯坦是对的,个体观点(就轨道而言)和统计观点(就概率而言)是等价的
吉布斯通过系综方法把群体动力学引入了物理学。系综由相空间中的点“云”来描述(参见图1.4)。这种点云由一个有简单物理解释的函数ρ(q,p,t)来描述:即在时刻t,在一个围绕着点(q,p)的相空间小区域内找到一个点的概率。轨道对应于一种特殊情形,其中函数ρ除在点(q0,p0)以外处处都为零,这种状况由ρ的一个特殊形式来描述。那些除了在一个点外,在其他各处都为零的函数叫做狄拉克函数δ(x)。函数δ(x-x0)对所有x≠x0的点都为零。因此,对零时刻的单个轨道来说,分布函数ρ的形式是ρ=δ(q-q0)δ(p-p0)。[注]以后我们还会回到δ(x)函数的特性上来。
[注]我们取x=x0时,函数δ(x-x0)向无穷大发散。所以,与连续函数x或Sinx相比,δ函数具有“反常的”特性。它被称为广义函数或广义分布(不要与概率分布ρ相混淆)。广义函数往往与检验函数中φ(x)一同使用,检验函数亦是连续函数[即 ∫dxφ(x)δ(x-x0)=φ(x0)]。还应注意,在时刻t,对于以速度p0/m运动的自由粒子,我们有概率 ρ=δ(p-p0)δ(q-q0-p0t/m),
因为动量保持不变,坐标随时间呈线性变化。这两个描述层次,“个体”层次(对应于单个轨道)和“统计”层次(对应于系综)是等价的。
但是如吉布斯所清楚阐述的,当得不到精确的初始条件时,系综的方法不过是一个方便的计算工具而已。在他们看来,概率表达的是无知,是信息不足。甚至从动力学观点来看,对个体轨道和概率分布的讨论总是被认为是等价的问题。我们可以从个体轨道出发,然后推出概率函数的演化,反之亦然。概率ρ只是对应于轨道的叠加,并不导出任何新的特性。
真的总是如此吗?这对我们不期待任何不可逆性的简单稳定系统来说的确是如此。吉布斯和爱因斯坦是对的,个体观点(就轨道而言)和统计观点(就概率而言)是等价的。这很容易证实,我们将在第五章回到这一点上来。不过,这对不稳定系统来说也是对的吗?在分子水平上涉及不可逆过程的所有理论,如玻尔兹曼的动理学理论,这些理论都涉及概率而不涉及轨道,又会怎样呢?这又是因为我们的近似,我们的粗粒化吗?那我们如何解释动理学理论对稀薄气体诸如热导率和扩散等许多性质定量预言的成功,所有这些都被实验所证实呢?
庞加莱对动理学理论的成功倍加赞许,他写道:“也许气体动理学理论会作为一种模型使用……物理学定律将有一种全新的形式,它们将具有统计的特征。”这确实是先知之言。玻尔兹曼引进概率作为经验工具,这是特别大胆的一步。100多年以后的现在,我们开始理解概率概念在我们从动力学走向热力学时如何形成。不稳定性破坏了描述的个体层次与统计层次的等价性,于是概率获得了一个内在的动力学意义。这一认识导出了一种新型物理学,即本书的主题——群体物理学。
要解释我们说的是什么含义,考虑一个简化的混沌例子。假设在如图1.4所示的相空间内,我们有两种记为+或-的运动(亦即运动“上”域“下”),这样我们就有两种用图1.5和图1.6表示的情形。在图1.5中,相空间里有两个不同的区域,一个对应于运动-,另一个对应于运动+。若我们不管靠近边界的区域,则每一个`- 被- 包围,每一个+ 被+ 包围,这对应于稳定系统。初始条件的小变化不改变结果。
相反,在图1.6中,每一个+ 被- 包围,反之亦然。初始条件的微小变化被放大,故这个系统是不稳定的。这种不稳定性的一个首要结果是,现在轨道变得理想化了。我们不再能准备单一轨道,因为这意味着无限的精度。对稳定系统而言,这没有什么意义,但对于具有对初始条件敏感性的不稳定系统,我们只能给出包括多种运动形式的概率分布。这种困难仅仅是一个操作困难吗?是的,如果我们考虑轨道现在变成不可计算的话。但还有更多的难题:概率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。我们将在第四章看到,这具有根本性的结论。在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系综的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性实实在在地被打破了。对于不可约概率分布ρ,我们得到新的解,因为它们不适用于单个轨道。混沌定律不得不在统计层次上进行表述,这就是我们在前面一节中谈到不能以轨道来表达的动力学的推广的含义。这就引出了一种我们在过去从未遇到过的情形。初始条件不再是相空间中的点,而是由ρ在初始时刻t=o时所描述的某个区域。因此,我们有一个非局域描述。轨道依然存在,但它们是随机的概率过程的结局。不论如何精确地配合我们的初始条件,我们都得到不同的轨道。而且,我们将看到,时间对称性被打破了,因为过去和未来在统计表述中扮演着不同的角色。当然,对稳定系统而言,我们通过确定性轨道回到通常的描述