玻尔兹曼:如我们能够跟踪分子的个体运动,就会看到一个时间可逆的系统,这个系统中每个分子都遵从牛顿物理学定律。因为我们只能描述每个

来源: 2010-12-10 11:17:00 [博客] [旧帖] [给我悄悄话] 本文已被阅读:

在由大量的分子(1023个或阿伏伽德罗常量数量级)形成的复杂系统中,如气体或液体,显然我们不能计算每一个分子的行为。因此,玻尔兹曼引入了一个假设,即此种系统的所有微观状态都具有相同的先验概率。差异与由温度、压强和其他参量所描述的宏观状态有关。玻尔兹曼用计算产生宏观状态的微观状态的数量来定义每一个宏观状态的概率

1872年,玻尔兹曼发表了著名的H定理,它包括熵的一个微观类似物H函数。H定理说明每一个瞬间都会改变粒子速度的碰撞的结果。它表明,碰撞导致粒子群体的速度分布接近于平衡态(这被称为麦克斯韦一玻尔兹曼分布)。随着粒子群体趋近平衡态,玻尔兹曼的H函数减小,且在平衡态时达到其最小值,这个最小值意味着碰撞不再改变速度的分布。所以,对玻尔兹曼而言,粒子碰撞就是导致系统平衡的机理。
  玻尔兹曼和达尔文都用对群体的研究取代了对“个体”的研究,并表明细微的变化(个体的易变性或微观的碰撞)在发生了一段长时间之后会在一个集体层次上产生进化。(在后面的章节里,我们还要回到群体的作用上来。)恰如生物进化不能在个体层次上加以定义,时间流也是一个全局的性质(参见第五、第六章)。但在达尔文力图解释新物种的出现时,玻尔兹曼描述了趋向于平衡和均匀的演化。意味深长的是,这两种理论的命运呈鲜明对照。达尔文的进化论顶住猛烈的攻击而获胜,它仍然是我们认识生命的基础。相反,玻尔兹曼对不可逆性的解释却屈服于对它的批评,玻尔兹曼逐渐被迫退缩了。他不能排除“反热力学”进化的可能性,这种进化是熵减少和非均匀性自发增加(而不是被抹平)的结果。
  玻尔兹曼所面临的局面确实是激动人心的。他确信,为了认识自然,我们必须包括进化的特征,并且热力学第二定律所描述的不可逆性是迈向这一方向的关键一步。然而他又是动力学优良传统的继承人,认识到这个传统阻碍了他赋予时间之矢一个微观意义。
  从今天的有利观点来看,玻尔兹曼必须在他那物理学应当认识演化的信念和他对物理学传统的忠诚之间作出选择,这显得特别痛心。他的尝试以失败告终的事实在今天看来不言而喻。每个大学生都学过,轨道是时间可逆的,它允许未来和过去没有差别。正如庞加莱(Hedri Poincare)所述,靠时间可逆过程的轨道来解释不可逆性,虽然努力不计其数,但显然是一个纯粹的逻辑错误。假设我们将所有分子的速度符号都颠倒过来,于是系统进入它自己的“过去”。即使熵在速度反演之前是增加的,现在它也将会减少。这就是洛施密特(Joseph Loschmidt)的速度反演佯谬,它是玻尔兹曼不能排除反热力学行为的原因。面对严厉的批评,玻尔兹曼用一个基于我们缺乏信息的概率的解释取代了他对热力学第二定律的微观解释。
  在由大量的分子(1023个或阿伏伽德罗常量数量级)形成的复杂系统中,如气体或液体,显然我们不能计算每一个分子的行为。因此,玻尔兹曼引入了一个假设,即此种系统的所有微观状态都具有相同的先验概率。差异与由温度、压强和其他参量所描述的宏观状态有关。玻尔兹曼用计算产生宏观状态的微观状态的数量来定义每一个宏观状态的概率。
  玻尔兹曼可能让我们想象,例如,一个容器被分成彼此相通的两个相等的室,这个容器包含了数目众多的分子,设为N个。尽管我们不能跟踪每一个分子的轨迹,但通过测量一个宏观量,如每个室的压强,我们可以确定它所包含的分子数目。我们还可以设一个起点,即物理学家通常所称的“初态”,这里,两个室中的一个几乎是空的,我们能预期观察到什么呢?随着时间的推移,分子将向那个空室迁移。事实上,绝大多数所有可能的微观状态相当于那种每个室包含相同数目分子的宏观状况。这些状态就相当于平衡态,即两个室的压强相等。一旦达到了这种状态,分子将会继续从一个室迁移到另一个室,但平均来说,迁移到右室和迁移到左室的分子数将是相等的。撇开一些小的、短暂的涨落不谈,两个室中的分子数将随时间保持不变,平衡态将得以保持。不过,在这种论证中有一个根本的弱点,即自发的、长时期偏离平衡态并非是不可能的,纵如玻尔兹曼所言乃是“不大可能的”。
  玻尔兹曼以概率为基础的解释,使我们观察的宏观特征成为我们观察到的不可逆性的原因。假如我们能够跟踪分子的个体运动,就会看到一个时间可逆的系统,这个系统中每个分子都遵从牛顿物理学定律。因为我们只能描述每个室中的分子的数目,所以,我们认为系统逐渐向平衡态演化。按照这种解释,不可逆性不是自然的基本法则,而仅仅是我们观察到的、近似的宏观特征的结果。
  策梅洛(Ernst Zermelo)引证庞加莱复规定理对玻尔兹曼论证洛施密特反演佯谬提出了批评。这一定理指出,如果我们等待足够长的时间,就会观察到动力系统自发地回归我们希望接近初态的一种状态。物理学家斯莫卢霍夫斯基(Roman Smoluchowki)断言,“如果我们的观察延续不可计数长的时间,一切过程都将表现出是可逆的。”这直接适用于玻尔兹曼的二室模型。经过足够长的时间以后,初始时的空室又会变成空的。不可逆性仅仅相当于一种不具有任何根本性意义的表象