薛定谔方程 束缚於氢原子内的电子的波函数可以视为氢原子的哈密顿算子的特征向量,同时也是角动量算子的一个特征向量。它们对应於能级(

http://zh.wikipedia.org/zh/%E7%89%B9%E5%BE%81%E5%90%91%E9%87%8F

薛定谔方程

图3、電子的機率密度繪圖。橫向展示不同的角量子數,豎向展示不同的能級 (n) 。束缚於氢原子内的电子的波函数可以视为氢原子的哈密顿算子的特征向量,同时也是角动量算子的一个特征向量。它们对应於能级(递增:n=1,2,3,...)和角动量(递增:s, p, d,...)的特征值。这里绘出了波函数绝对值的平方。更亮区域对应于位置的量子测量的更高機率密度。位於每幅图的中心是原子核,是一个质子主条目:薛定谔方程
在量子力学中,不含时薛定谔方程是一个以微分算子代表的变换的特征值方程,能够描述一个粒子的量子行为:


其中,是哈密顿算子,一个二阶微分算子,是描述粒子的量子行为的波函数,对应于特征值的特征函数,该值可以解释为粒子的能量。

假设,我们只想寻找薛定谔方程的束缚态(bound state)解,那麼,可以在平方可积函数的空间中寻找。由於这个空间是希尔伯特空间,有一个定义良好的标量积,我们可以引入一个基集合,然后表示和为一个一维数组和一个矩阵。这样,我们能够用矩阵形式表达薛定谔方程。(图3表示氢原子哈密顿算子的最低能级特征函数。)

狄拉克标记经常在这个上下文中使用,以强调量子态的态向量和它表示於位置空间的波函数之间的区别。采用狄拉克标记,薛定谔方程写为


并称是的一个本征态(有时候在入门级课本中写作),是一个自伴算子(参看可观察量)。在上述方程中,理解为通过作用於得到的一个新的态向量。

请您先登陆,再发跟帖!