希尔伯特谱论:实连续积分核K(x,y)是对称的(即K(x,y)=K(y,x))的条件下,获得许多比弗雷德霍姆更深入的结果。例如,
函分析的另一个源头是积分方程。自从1823年N.H.阿贝尔从力学问题中提出并研究积分方程ƒ(x)以后,19世纪末在微分方程,例如在狄利克雷等问题的研究中,出现了上述积分方程的推广形式,所谓沃尔泰拉型积分方程。(E.)I.弗雷德霍姆1900年又对积分方程作了重要研究。后者引起了D.希尔伯特的极大兴趣。1904~1906年,希尔伯特在这方面完成了 6篇论文。他在实连续积分核K(x,y)是对称的(即K(x,y)=K(y,x))的条件下,获得许多比弗雷德霍姆更深入的结果。例如,证明特征值是实的,给出预解式的形式与特征展开等等,这些通常称为希尔伯特谱论。希尔伯特利用正交展开将积分方程求解问题化成无限阶的线性方程组求解问题,并在此基础上引入无限维(实)欧几里得空间l2,即满足的实数列α=(α1,α2,…,αn,…)全体。他提出了l2上有界双线性形式、有界线性形式(即所谓连续线性泛函)以及两种收敛(即所谓的强、弱收敛)等概念,给出了l2上的选择原理(即所谓的闭单位球的弱紧性),还发现连续谱的存在等等。这表明用代数方法来研究分析中某些课题是很自然的。
