一个函数y0相“邻近”的一切函数,这就向人们暗示:Y 中的函数(“点”)与函数(“点”)之间有着某种衡量远近的几何度量,从而Y是
如果说微积分是研究以数 x为自变元的函数ƒ(x),那么变分法就是研究以函数y为自变元的函数J[y]。函数y 在这里被视为“点”。19世纪末,J.(-S.)阿达马首先给这种函数的函数J[y]冠以“泛函”的名称。在泛函J[y]的极值的研究中,需要考察与一个函数y0相“邻近”的一切函数,这就向人们暗示:Y 中的函数(“点”)与函数(“点”)之间有着某种衡量远近的几何度量,从而Y是具有某种度量的、由函数(“点”)构成的“空间”。但是,认识到要把函数视为点,把某些函数构成的集合视为空间(函数空间),还是在和其他学科长期发展的历史过程中形成的。所以就连“泛函”一词的出现也并不是在变分法形成的18世纪,而是直到19世纪末。
