所谓“基本群”是描述多连通空间的基本拓扑性质的. 比如一个平面, 其基本群是平庸的, 因为平面上所有的环都能连续变换到其它任何一

来源: 2010-10-25 17:12:34 [博客] [旧帖] [给我悄悄话] 本文已被阅读:

所谓“基本群”是描述多连通空间的基本拓扑性质的. 比如一个平面, 其基本群是平庸的, 因为平面上所有的环都能连续变换到其它任何一个环; 但是, 如果一个平面上被挖掉一个窟窿, 这个带窟窿的准平面的基本群就不平庸了, 因为绕着窟窿的环永远无法变换到没有绕着窟窿的环, 于是其基本群至少有两类元素! 这就是说: “平面”上的量子力学与“带一个窟窿的准平面”上的量子力学是有本质上的区别的! 好! 现在让我们来设想一下: 如果我们让“准平面”里的那个窟窿越来越小, 无限趋近于无穷小…它能达到真正的平面吗? 否!!! 只要这个窟窿不是真正的“等于无穷小”(就是不存在了!), 这个准平面还一直是准平面, 哪怕那个引起非平庸基本群的窟窿已经趋于无穷小了, 由于其基本群还是同样的非平庸群, 所以和真正的平面一直有着本质的区别!趋于无穷和等于无穷, 将发生质的突变!(一个是拓扑非平庸的准平面, 一种是拓扑平庸的平面)。