在麦克斯韦对场方程的表述中就只包含了最少的时空导数。 我们如今知道, 统治电动力学的方程包含有带任意阶时空导数的项, 但那些项就
http://www.changhai.org/articles/translation/physics/EinsteinMistake1.php
在麦克斯韦对场方程的表述中就只包含了最少的时空导数。 我们如今知道, 统治电动力学的方程包含有带任意阶时空导数的项, 但那些项就象广义相对论中的高阶导数项一样, 在宏观尺度上没有可观测效应
http://city.udn.com/63811/3665301
我在討論愛因斯坦場方程的那篇文章的注釋6。在那裏我是這樣寫的:如將原方程中的波函數取復數共軛,然後再將共軛方程與原方程作適當結合,便可以衍生出「密度流的守恒方程」。在戈登-克萊茵方程所衍生出的「密度流的守恒方程」中,幾率的荷密度含有波函數對時間的偏微商;而在薛定諤方程、狄拉克方程所衍生出的「密度流的守恒方程」中,幾率的荷密度卻不含這種對時間的微商。前者(幾率荷密度含有對時間微商)在自然哲學上是錯誤的,因為取適當的初始條件,它有可能使幾率荷密度變成負值,而負值的荷密度沒有物理意義。細究其原因可以發現,戈登-克萊茵方程所使用的波函數對時間的兩階偏微商就是造成該問題的根源。