被激发的电离气体电离到一定程度后,便处于导电状态,这种状态的电离气体表现出集体行为,即电离气体中每一带电粒子的运动,都会影响其周

来源: 2010-10-18 09:09:44 [博客] [旧帖] [给我悄悄话] 本文已被阅读:

http://baike.sinology.cn/xgx/index.php?doc-view-376






高举毛泽东伟大旗帜


将文化革命进行到底

首页
百科分类
排行榜
新国学问答
天汉宫
国学书库
国学培训
国学商城
国学资讯
天汉通鉴
轩怡园
新国学研究院


用户名 -> 人气指数登录注册帮助
高级搜索编辑实验
创建词条 百科分类 新国学主论 | 简易冄学 | 新国学辅论 | 新国学典藏 | 民族宗教 | 网文素材 | 国故学赏析 | 词条 | 文章 词条基本信息创建者: sinology
创建时间: 02-20 09:49
浏览: 1034
编辑: 5
版本: 6
查看编辑者 >>查看版本 >>最近编辑者sinology03-03 05:19同类词条生物物理学费米能量子隧道效应关键业绩指标KPI体系细胞膜和细胞壁$False$09-22 曹顶(曹鼎)。
08-23 余西古镇民间故事:布鞋垫稳贞节
08-11 余西大悲殿
06-14 余西学派余庆场余西古镇。
06-14 余西古镇余西学派。
06-03 六四二十周年祭
新国学大百科 >> 词条 费米子和玻色子发表评论编辑词条目录
• 简介
• 费米子凝聚态
• 费米子(fermion)
• 玻色子和费米子
• 粒子的自旋
• 费米子可以传递相互作用吗?
• 超对称
[显示部分][显示全部]
简介编辑本段回目录(1)概述

基本粒子按自旋可分为两大类,有一些粒子的自旋量子数是半整数,这一类粒子叫做费米子,另一些粒子的自旋量子数是整数,这一类粒子叫做玻色子。

(2)说明

①电子、质子的自旋为1/2,它们都是费米子。

②费米子符合费米一迪拉克统计法,玻色子符合玻色一爱因斯坦统计法。

③光子、π介子的自旋量子数为0,它们都是玻色子。

④从已知的事实看来,稳定物质都是由费米子(如质子、中子、电子)组成,而玻色子(如π介子和光子)似乎是在传递粒子之间的相互作用。

费米子
费米子凝聚态编辑本段回目录  探寻物质第六态
  人类生存的世界,是一个物质的世界。然而,这个世界还有许多人们肉眼看不到的物质。过去,人们只知道物质有三态,即气态、液态和固态。20世纪中期,科学家确认物质第四态,即“等离子体态”。1995年,美国标准技术研究院和美国科罗拉多大学的科学家组成的联合研究小组,首次创造出物质的第五态,即“玻色一爱因斯坦凝聚态”。去年,这个联合研究小组又宣布,他们创造出物质的第六种形态,即“费米子凝聚态”。
  回顾物质前五态
  人们通常所见的物质是由分子、原子构成的。处于气态的物质,其分子与分子之间距离较大。而对液态物质来说,构成它们的分子彼此靠得很近;分子一个挨着一个,它的密度要比气态的大得多。至于固态物质,它们的原子一个挨着一个,并相互牵拉,这就是固体比液体硬的原因。而被激发的电离气体电离到一定程度后,便处于导电状态,这种状态的电离气体表现出集体行为,即电离气体中每一带电粒子的运动,都会影响其周围带电粒子,同时也受其他带电粒子的约束。因为电离气体内正负电荷数相等,所以电离气体整体表现出电中性,这种气体状态被称为等离子体态。由于它的独特行为与固态、液态、气态都截然不同,故称为物质第四态。
  所谓“玻色一爱因斯坦凝聚态”,是科学巨匠爱因斯坦在70 年前预言的一种新物态。为了揭示这个有趣的物理现象,世界科学家为此付出了几十年的努力。 1995年,美国科学家维曼、康奈尔和德国科学家克特勒首先从实验上证实了这个新物态的存在。为此,2001年度诺贝尔物理学奖授予了这3位科学家,以表彰他们在实现“玻色一爱因斯坦凝聚态”研究中作出的突出责献。
  “玻色一爱因斯坦凝聚态” 是物质的一种奇特的状态,处于这种状态的大量原子的行为像单个粒子一样。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚” 到同一状态,要达到该状态,一方面需要物质达到极低的温度,另一方面还要求原子体系处于气态。华裔物理学家朱棣文,曾因研究出激光冷却和磁阱技术这一有效的制冷方法,而与另两位科学家分享了1997年的诺贝尔物理学奖。“玻色一爱因斯坦凝聚态”所具有的奇特性质,不仅对基础研究有重要意义,在芯片技术、精密测量和纳米技术等领域,也都有很好的应用前景。
  何为“费米子凝聚态”
  根据“费米子凝聚态”研究小组负责人德博拉·金的介绍, “费米子凝聚态”与“玻色一爱因斯坦凝聚态”都是物质在量子状态下的形态,但处于“费米子凝聚态”的物质不是超导体。
  量子力学认为,粒子按其在高密度或低温度时集体行为可以分成两大类:一类是费米子,得名于意大利物理学家费米;另一类是玻色子,得名于印度物理学家玻色。这两类粒子特性的区别,在极低温时表现得最为明显:玻色子全部聚集在同一量子态上,费米子则与之相反,更像是“个人主义者”,各自占据着不同的量子态。“玻色一爱因斯坦凝聚态”物质由玻色子构成,其行为像一个大超级原子,而“费米子凝聚态”物质采用的是费米子。当物质冷却时,费米子逐渐占据最低能态,但它们处在不同的能态上,就像人群涌向一段狭窄的楼梯,这种状态称作“费米子凝聚态”。
  “费米子凝聚态”是如何创造出来的?
  科学家们在1995年已成功地通过将具有玻色子特征的原子气体冷却至低温,获得所谓的 “玻色一爱因斯坦凝聚态”。由于没有任何2个费米子能拥有相同的量子态,费米子的凝聚一直被认为不可能实现。去年,物理学家找到了一个克服以上障碍的方法,他们将费米子成对转变成玻色子。这一研究为创造“费米子凝聚态”铺平了道路。
  德博拉·金领导的联合研究小组,将具有费米子特征的钾原子气体冷却到绝对零度以上的十亿分之一度,此时钾原子停止运动。绝对零度相当于一273.15℃。试验中,科学家用激光方法远远达不到费米子凝聚所要求的温度。为此,还要把原子放到“磁杯”中进行蒸发冷却。他们将气体约束在真空小室中,并采用磁场和激光使钾原子配对,成功地创造出“费米子凝聚态”。
  费米子与超导体有哪些不同?
  首先,费米冷凝体所使用的原子比电子重得多,其次是原子对之间吸引力比超导体中电子对的吸引力强得多,在同等密度下,如果使超导体电子对的吸引力达到费米体中原子对的程度,制造出常温下的超导体立即可以实现。超冷气体中形成费米体为研究超导的机理提供了一个崭新的物质工具。当然,现在的技术并不能使所有费米子都可以发生费米冷凝,而且所获得的冷凝体还相当脆弱——比玻璃还要脆!但这只是技术问题。
  第六态催生下一代超导体
  这项成果在超导技术上的应用前景非常广阔,有助于下一代超导体的诞生,而新一代超导体技术可在电力工程、电能输送、电动机与发电机的制造、磁流体发电、超导磁悬浮列车、超导计算机、超导电子器件、地球物理勘探、地质学、生物磁学、高能加速器与高能物理研究等众多领域和学科中大显身手。
费米子(fermion)编辑本段回目录费米子 (fermion) 是依随费米-狄拉克统计、角动量的自旋量子数为半奇数的粒子。费米子遵从泡利不相容原理。得名于意大利物理学家费米。
根据标准理论,费米子均是由一批基本费米子,而基本费米子则不可能分解为更细小的粒。基本费米子分为 2 类:夸克和轻子。而这 2 类基本费米子,又分为合共 24 种味道 (flavour):

12 种夸克:包括上夸克 (u)、下夸克 (d)、奇夸克 (s)、魅夸克 (c)、底夸克 (b)、顶夸克 (t),及它们对应的 6 种反粒子。
12 种轻子:包括电子 (e-)、渺子 (μ-)、陶子 (τ-)、、微中子νe、微中子νμ、微中子ντ,及对应的 6 种反粒子,包括 3 种反微中子。
根据标准理论,其他有质量的非基本粒子,都有费米组成,例如中子、质子都是由三种夸克组成,自旋为1/2。奇数个核子组成的原子核。因为中子、质子都是费米子,故奇数个核子组成的原子核自旋是半整数。


  例如:
  夸克
  轻子:包括电子、渺子、陶子及对应的反粒子、三种中微子及对应的三种反中微子。
  中子、质子:都是由三种夸克组成,自旋为1/2。
  奇数个核子组成的原子核。(因为中子、质子都是费米子,故奇数个核子组成的原子核自旋是半整数。)
  
  由全同费米子组成的孤立系统,处于热平衡时,分布在能级εi的粒子数为,Ni=gi/(e^(α+βεi)+1) 。α为拉格朗日乘子、β=1/(kT),有体系温度,粒子密度和粒子质量决定。εi为能级i的能量,gi为能级的简并度。
  根据自旋倍数的不同,科学家把基本粒子分为玻色子和费米子两大类。费米子是像电子一样的粒子,有半整数自旋(如1/2,3/2,5/2等);而玻色子是像光子一样的粒子,有整数自旋(如0,1,2等)。
  这种自旋差异使费米子和玻色子有完全不同的特性。没有任何两个费米子能有同样的量子态:它们没有相同的特性,也不能在同一时间处于同一地点;而玻色子却能够具有相同的特性
  基本粒子中所有的物质粒子都是费米子,是构成物质的原材料(如轻子中的电子、组成质子和中子的夸克、中微子);而传递作用力的粒子(光子、介子、胶子、W和Z玻色子)都是玻色子。
玻色子和费米子编辑本段回目录  粒子按其在高密度或低温度时集体行为的不同可以分成两大类:一类是费米子,得名于意大利物理学家费米,另一类是玻色子,得名于印度物理学家玻色。区分这两类粒子的重要特征是自旋。自旋是粒子的一种与其角动量(粒略地讲,就是半径与转动速度的乘积)相联系的固有性质。量子力学所揭示的一个重要之点是,自旋是量子化的,这就是说,它只能取普朗克常数的整数倍(玻色子,如光子、介子等)或半整数倍(费米子,如电子、质子等)。

  费米子和玻色子遵循完全不同的统计规律。前者遵循的费米-狄拉克统计,其中一个显著和特点,就是1925年瑞士科学家泡利发现的“泡利不相容原理”,即在一个费米子系统中,绝不可能存在两个或两个以上在电荷、动量和自旋朝向等方面完全相同的费米子。这就像电影院里的座位,每座只能容纳一个人。而玻色子则完全不同,一个量子态可以容纳无穷多个玻色子。因此,也只有玻色子才可能出现玻色-爱因斯坦凝聚现象。

  例如,锂的两种同位素锂6和锂7分别为费米子和玻色子。图片分别显示在810、510和240nk时锂6和锂7原子气和原子云照片。我们可以看到,锂7(左),随着温度的降低所占的尺寸变小,也就是发生了凝聚,而锂6(右)的尺寸则保持稳定,不发生凝聚。这是因为泡利不相容原理的限制,使两个费米子不可能在同一时间占据同一个空间。正因如此,白矮星最终只能在引力作用下坍塌到一个极限尺寸而不再进一步缩小。
粒子的自旋编辑本段回目录是粒子固有的角动量,是其内禀的属性,每种粒子都有其固定的大小不会改变。在数值上,粒子的自旋角动量S=[s(s+1)]^(1/2)h'(其中s是自旋量子数,电子质子中子的s=1/2,光子的s=1,介子的s=0;h'=h/(2π),h是普朗克常数)。s是整数还是半整数对粒子的统计性影响很大,著名的泡利不相容原理本质上就是s为半整数的粒子遵循费米-狄拉克统计。
粒子自旋通常都会使它带有磁矩,这样它就像一块小磁铁,在有梯度的磁场中它就会受力偏转(打到接收屏上后一般都明显地分为上下两条曲线,不是连续的一片)。这应该属于间接测自旋吧。自旋不仅在大小上是固定不变的,它在空间的任意方向上的投影的大小也只能取两个固定的数值——±sh'。这两点都与宏观物体的旋转大不相同,后者的角动量不论是总的大小还是它在某方向上投影的大小都是连续可变的,而粒子则是固定的或量子化的。由于粒子没有“形状”和“大小”,其“自转线速度”和“自转角速度”都是没有意义的。
粒子的自旋是除了它的三维外部空间的自由度以外的内部空间的第四个自由度,这个自由度上只有±sh'这两个分立的取值。不像空间坐标那样可以连续取值。最初是实验逼得人们认识到这一点的,后来狄拉克构建了著名的狄拉克方程,这是一个关于自由带电粒子的满足狭义相对论要求——在洛仑兹变换下不变的波动方程,它自动给出了电子的自旋及其分量的分立取值。
量子力学给出的诸多结论连同量子力学本身都是匪夷所思的。玻尔曾说:“如果谁没被量子力学搞得头晕,那他就一定是不理解量子力学。”爱因斯坦说:“我思考量子力学的时间百倍于广义相对论,但依然不明白。”费曼说:“我们知道它如何计算,但不知道它为何要这样去计算,但只有这样去计算才能得出既有趣又有意义的结果。”(原话可能有出入,大意如此)
来看看数学上是怎样描述自旋的!尽管看完之后仍不免糊涂,但我想那会是有一些启发作用的,若还能从中体会到数学的奇妙就更好了。
量子力学认为物理系统的一切信息都已包含在确知的波函数Ψ中,为了提取其中的有用信息,量子力学把所有在它看来是有意义的物理量都“重塑”为相应的算符——一系列四则运算复数运算微分运算矩阵运算等运算规则的序列,然后将算符F作用在Ψ上,找到适当的Ψ(这样的Ψ一般都不只一个)使得:FΨ=fΨ(F是相同的情况下,满足上述关系的Ψ可有多个,每个Ψ可对应着不同的实数f;这样的Ψ称为本征函数,f称为本征值),那么,f就是F所对应的物理量在测量时可能测得的数值,测得f的概率可由与f对应的Ψ算出。(自旋的计算事例见图片,其中有涉及到“自旋为1/2的粒子是怎么能转两圈才能和不转一样”的问题。)


费米子可以传递相互作用吗?编辑本段回目录网文作者:卢昌海

这个用文字不容易准确叙述, 权且试试吧。:)

要想回答这个问题, 最好的方法是先定义什么叫做 “传递相互作用的粒子”。 我们知道基本粒子理论中的所有粒子都可以出现在 Feynman 图的相互作用顶点中, 但是我们却只把其中的一部分粒子称为 “传递相互作用的粒子”。 举个例子来说, 电子和光子同时出现在标准模型的 eeγ 顶点中。 我们却只把光子称为 “传递相互作用的粒子”, 这是为什么呢? 为什么我们不把出现在同一个相互作用顶点中的电子称为 “传递相互作用的粒子” 呢? 究竟什么是 “传递相互作用的粒子”? 在 Feynman 图的层次上, 这种粒子可以用一个简单的方式来定义 (当然这种定义归根到底是来源于 Lagrangian 中对物质场与规范场的区分), 那就是在一个相互作用的顶点中, 倘若一个粒子的发射不影响其它粒子的类型, 则该粒子 (并且也只有这样的粒子) 是 “传递相互作用的粒子”, 它是替未改变类型的粒子传递相互作用。 在 eeγ 顶点中, 唯一符合上述定义的诠释是: 光子是替电子传递相互作用的粒子 (如果强行把电子作为相互作用粒子的话, 则该顶点中剩下的两条线一条是光子线, 一条是电子线, 不是同一类型, 与定义相矛盾, 因此在这一顶点中电子不是传递相互作用的粒子)。

但是这里有一个很微妙的地方, 那就是究竟什么样的粒子才算 “同一类型”? 在上面所举的 eeγ 顶点中这是不言而喻的, 因为其中有两条线都是电子线, 电子与电子自然是同一类型。 但 W± 粒子也是传递相互作用的粒子, 发射一个 W- 粒子却会使 e 变成 νe, 这又如何解释呢? 这就涉及到基本粒子理论中 multiplet 的概念。 在 W± 所传递的弱相互作用中 e 与 νe 组成一组弱同位旋的 doublet。 对于弱相互作用而言, 这样的两个粒子被视为是同一个粒子的不同量子态 (就好比自旋分量不同的两个电子), 因此它们虽然从其它相互作用的角度上看很不相同 (比如从电磁相互作用角度看电荷不同), 但对于弱相互作用来说却是 “同一类型” 的。 这样的例子在历史上还有许多。 比如 π 介子曾被视为传递强相互作用的粒子, 但是发射一个带电 π 介子会使质子与中子互换。 这之所以没有妨碍我们把带电 π 介子视为相互作用粒子, 正是因为质子与中子在强相互作用唯象理论中是一组同位旋 doublet。 因此, 上述定义中 “类型” 的含义是: 在一个相互作用理论中所有处于同一个 multiplet 中的粒子都属于同一类型。

有了 “传递相互作用的粒子” 的定义, 就可以回答标题中的问题了。 这个答案我们分两部分来叙述。 首先在传统场论中问题的答案是否定的。 传统场论中所有传递相互作用的粒子都是玻色子。 这是因为发射一个费米子会使玻色子变成费米子, 或费米子变成玻色子[注一], 但玻色子与费米子在传统场论中是绝不会出现在同一个 multiplet 中的 (因为否则的话就必须引进带 fermionic 生成元的变换才能将同一个 multiplet 中的粒子联系起来, 这样的变换在传统场论中是不存在的), 从而是完全不同类型的。 因此传统场论中任何粒子都不可能发射一个费米子却不改变自己的类型, 按照上面的定义, 这也就是说费米子在传统场论中是不可能传递相互作用的。

上面的分析同时也给出了费米子传递相互作用的条件, 那就是必须存在同时包含玻色子与费米子的 multiplet。 这样的理论只有一种, 那就是超对称理论。 在超对称理论中一个粒子可以由玻色子变成 (同一个 multiplet 中的) 费米子 (或反过来) 却不改变类型, 在这一过程 (也只有这类过程) 中发射的费米子 (gaugino, gravitino) 就和传统场论中的光子、 W± 粒子等一样可以传递相互作用。 因此在超对称理论 (并且也只有超对称理论) 中费米子 (gaugino, gravitino) 可以传递相互作用。
超对称编辑本段回目录是费米子和玻色子之间的一种对称性,该对称性至今在自然界中尚未被观测到。物理学家认为这种对称性是自发破缺的。我们知道, 基本粒子按照自旋的不同可以分为两大类: 自旋为整数的粒子被称为玻色子 (Boson), 自旋为半整数的粒子被称为费米子 (Fermion), 这两类粒子的基本性质截然不同。 超对称便是将这两类粒子联系起来的对称性 - 而且是能做到这一点的唯一的对称性。
[*]内容
  对超对称的研究起源于二十世纪七十年代初期, 当时 P. Ramond、 A. Neveu、 J. H. Schwarz、 J. Gervais、 B. Sakita 等人在弦模型 (后来演化成超弦理论) 中、 Y. A. Gol'fand 与 E. P. Likhtman 在数学物理中分别提出了带有超对称色彩的简单模型。 1974 年, J. Wess 和 B. Zumino 将超对称运用到了四维时空中, 这一年通常被视为是超对称诞生的年份。
  在超对称理论中每一种基本粒子都有一种被称为超对称伙伴 (Superpartner) 的粒子与之匹配, 超对称伙伴的自旋与原粒子相差 1/2 (也就是说玻色子的超对称伙伴是费米子, 费米子的超对称伙伴是玻色子), 两者质量相同, 各种耦合常数间也有着十分明确的关联。 超对称自提出到现在已经快三十年了, 在实验上却始终未能观测到任何一种已知粒子的超对称伙伴, 甚至于连确凿的间接证据也没能找到。 尽管如此, 超对称在理论上非凡的魅力仍然使得它在理论物理中的地位节节攀升, 今天几乎在物理学的所有前沿领域中都可以看到超对称概念的踪影。 一个具体的理论观念, 在完全没有实验支持的情况下生存了将近三十年, 而且生长得枝繁叶茂、 花团锦簇, 这在理论物理中是不多见的。 它一旦被实验证实所将引起的轰动是不言而喻的。 正如 S. Weinberg (电弱统一理论的提出者之一) 所说, 那将是 “纯理论洞察力的震撼性成就”。 当然反过来, 它若不幸被否证, 其骨牌效应也将是灾难性的, 整个理论物理界都将哀鸿遍野。
  超对称的魅力源泉之一在于玻色子与费米子在物理性质上的互补, 在一个超对称理论中, 这种互补性可以被巧妙地用来解决高能物理中的一些极为棘手的问题, 比如标准模型中著名的等级问题 (Hierarchy Problem), 即为什么在电弱统一能标与大统一或 Planck 能标之间存在高达十几个数量级的差别?超对称在理论上的另一个美妙的性质是普通量子场论中大量的发散结果在超对称理论中可以被超对称伙伴的贡献所消去, 因而超对称理论具有十分优越的重整化性质。
  关于超对称的另外一个非常值得一提的结果是, 它虽然没有实验证据, 却有一个来自大统一理论的 “理论证据”。 长期以来物理学家们一直相信在很高的能量 (即大统一能标, 约为 1015 - 1016 GeV) 下微观世界的基本相互作用 - 强相互作用及电弱相互作用 - 可以被统一在一个单一的规范群下, 这样的一种理论被称为大统一理论。 大统一理论成立的一个前提是强、 电磁及弱相互作用的耦合常数必须在大统一能标上彼此相等, 这一点在理论上是可以加以验证的。 但是验证的结果却令人沮丧, 在标准模型框架内上述耦合常数在任何能量下都不彼此相等。 也就是说标准模型与大统一理论的要求是不相容的, 这无疑是对大统一理论的沉重打击, 也是对物理学家们追求统一的信念的沉重打击。 超对称的介入给了大统一理论新的希望, 因为计算表明, 在对标准模型进行超对称化后所有这些耦合常数在高能下非常漂亮地汇聚到了一起。 这一点大大增强了物理学家们对超对称的信心, 虽然它只是一个理论证据, 而且还得加上引号, 因为这一 “证据” 说到底只是建立在物理学家们对大统一的信念之上才成之为证据的。
意义
  超对称理论的出现极大地改变了理论物理的景观, 也给宇宙学常数问题的解决带来了一线新的希望。
  这一线希望在于玻色子与费米子的零点能正是两者物理性质互补的一个例子, 玻色子的零点能是正的, 而费米子的零点能却是负的。 这一点在标准模型中也成立, 只不过在标准模型中玻色子与费米子的参数迥异, 自由度数也不同, 因此这种互补性并不能对零点能的计算起到有效的互消作用。 但是在超对称理论中玻色子与费米子的参数及自由度数都是严格对称的, 因此两者的零点能将严格互消。 不仅零点能如此, 其它对真空能量有贡献的效应也如此, 事实上在严格的超对称理论中可以普遍地证明真空的能量密度 - 从而宇宙学常数 - 为零。
  假如时间退回到十几年前 - 那时还没有宇宙学常数不为零的确凿证据 - 宇宙学常数为零不失为一个令人满意的结果, 可惜时过境迁, 现在我们对这一结果却是双重的不满意。 因为我们现在认为宇宙学常数并不为零, 因此对宇宙学常数为零的结果已不再满意。 另一方面, 物理学家们辛辛苦苦做了多年的实验, 试图找到超对称伙伴 (并顺便拿 Nobel 奖), 结果却一个也没找到, 因此现实世界根本就不是超对称的, 从而我们对以严格的超对称为基础的证明本身也很不满意 (这后一个不满意放在十几年前也成立)。
  读者可能会奇怪, 既然实验不仅未能证实, 反而已经否定了超对称, 物理学家们为什么还要研究超对称? 而且还研究得那么有滋有味、 乐此不疲? 那是因为物理学上有许多对称性破缺的机制可以协调这一 “矛盾”, 一种对称性可以在高能下存在, 却在低能下破缺。 电弱统一理论便是运用对称性破缺机制的一个精彩的范例。 物理学家们心中的超对称也一样, 严格的超对称只存在于足够高的能量下。 因此前面关于宇宙学常数为零的证明必须针对超对称的破缺而加以修正, 这一修正之下我们原先的双重不满意倒是消除了, 但不幸的是原先在严格的超对称管束下销声匿迹的种种 “不良” 效应却也通通卷土重来, 宇宙学常数虽然不再为零了, 却被大大地矫枉过正, 可谓是 “前门拒虎, 后门进狼”。
  那么考虑到超对称破缺后宇宙学常数的计算结果究竟有多大呢? 这取决于超对称在什么能量上破缺, 目前的看法是对标准模型来说超对称的破缺应该发生在 TeV (1012 eV) 能区。 这相当于在前面提到的零点能密度的计算中令 M~TeV (因为虽然量子场论本身的适用范围远远高于 TeV, 但在 TeV 以上的零点能被超对称消去了), 由此所得的宇宙学常数约为 ρ ~ (TeV)4/Mp2。 这一结果比观测值大了约 60 个数量级 (由此对应的宇宙半径在毫米量级), 比不考虑超对称时的 123 个数量级略微好些, 但也不过是 “五十步笑百步” 而已, 两者显然同属物理学上最糟糕的理论拟合之列。
[*]超对称和超弦理论
  在弦论的最基本层次上, 基本粒子被视为振动的弦而非点粒子。 一段弦可以有许多谐振模式, 不同的基本粒子就被诠释为这些不同的谐振模式。
  物理学家建立了N=8的超对称理论(Supersymmetry / SUSY)统一费米子与玻色子,那是认为这个宇宙除了四维之外,还有四维,这个八维宇宙叫超空间(superspace),然而这额外的四维不可被理解为时间抑或空间,八维宇宙是由费米子居住,物质可透过自旋由四维空间转入费米子居住之八维,又可由八维转回四维,即玻色子可换成费米子,费米子可转换成玻色子,它们没有分别,我们之所以看到它们自旋不同只不过是我们局限于四维而看不到八维的一个假象.
  打个譬喻,你在地球上只会感同到三维(上下前后左右),我们虽然知道时间之存在,然而我们眼睛看不到,眼睛只帮我们分析三维系统,然而有可能这个世界是八维,而因为眼睛只可分辨三维而你无法得知.
  科学家称这些一对之粒子为超对称伙伴(supersymmetric partner),如重力微子(gravitino),光微子(photino),胶微子(gluino),而费米子之伙伴叫超粒子(sparticle),只不过是在费米子前面加一个s,如超电子(selectron).可是我们知道费米子无论怎样转也转不出玻色子,亦没有发现费米子或玻色子转出来的超对称伙伴,例如电子就不是由任何已知玻色子转出来,假如每一玻色子或费米子都有其超对称伙伴,世界上之粒子数将会是现在的两倍.
  有认为超对称伙伴质量比原本粒子高很多倍,只存在于高能量状态,我们处于安静宇宙是不能够被看见,只有在极稀有的情形下,超对称伙伴会衰变成普通的费米子及玻色子,当然我们尚未探测到超对称伙伴,否则就哄动啰。
  超弦理论避免了试图将引力量子化时产生的紫外发散, 同时它也比传统量子场论更具预言能力, 比如它曾对粒子相互作用中超对称概念的提出有所助益。 在粒子相互作用的超对称统一理论所获得的成功中有迹象表明, 超对称在接近当前加速器的能量上就可能对基本粒子产生影响。 若果真如此, 则超对称将被实验证实, 并有可能具有宇宙学上的重要性, 与暗物质、 元素合成及宇宙暴胀相关。 磁单极在超弦理论的结构中起着重要作用, 因此如果超弦理论成立, 它们就必须存在, 虽然其密度也许已被宇宙暴胀稀释到无法观测的程度。 磁单极的质量在许多令人感兴趣的模型中都接近 Planck 质量, 但假如粒子相互作用与引力的统一 - 如最近某些模型所提出的 - 通过大的或弯曲的额外维度 (large or warped extra dimensions) 在接近 TeV 的能量上实现, 那么磁单极的质量就会小于 100 TeV。 在天体物理背景下这样的磁单极将是极端相对论性的。 在这类模型中, 超对称将毫无疑问出现在 TeV 能区。
超对称研究结果
  德国和美国两所大学的研究人员利用慕尼黑粒子加速器,用亚原子轰击金原子在轰击靶上的 反应结果显示有超对称现象存在。物理学家一直希望能证实自然界中存在超对称现象,从而能确认反 原子、反中子、波包子、费米子的存在,并能解释150亿年前天体大爆炸的形成机理,及进一步揭示物 质的内部结构。由于目前加速器的比量太小,所以一直无法找到超对称理论的证据。这次实验能初步证实自然界中存在超对称现象,
  03年,台湾大学物理系高能研究团队在“超对称”研究方面获得重大突破,宣布发现了30年来物理界最具有震撼性的发现:宇宙可能是由“超对称”的物质组成,有更多的粒子是前所未见的,并由实验证明应有“纳纳米”物质的存在,这一“诺贝尔级”新发现已使“新物理”征兆乍现。
  据台湾媒体报道,由台湾大学物理系师生组成的台大高能团队,13日宣布取得“诺贝尔级”的新发现。他们宣称发现了史上首见的“新物理”征兆,严重挑战已被沿用了30年的“标准模型”,而且已经获得99%的科学确认,未来全球物理教科书都可能必须改写。
  该研究结果也在今天凌晨于美国芝加哥费米实验室举行的“轻子光子”会议中发表,参与该会议的台大物理系教授侯维恕表示,这项研究发现在这场800多人参与的会议引起全场轰动,虽然有其它团队做出不太相同的结论,但由于台湾团队的正确率已经是千分之九百九十九,所以引起极高度的肯定与重视。学者们都认为,这是30多年来,了解宇宙领域碰到的最严苛挑战。学者们评估,大约只要再经过一年的时间,就可以确认这项“新物理”是否成立。

→如果您认为本词条还有待完善,请 编辑词条
标签: 费米子
关于本词条的评论 (共0条)发表评论>>
中翰清花上拍书画徐悲鸿作品216万 2010-10-9

王羲之作品现身嘉德秋拍 被鉴定为唐… 2010-10-9

2010上海宏大秋季中国书画拍卖会预… 2010-10-9

1件乾隆瓷瓶在港拍出2.5亿港元刷新… 2010-10-9

追逐风气风险大 和田玉年涨百倍现泡… 2010-10-9

人民币收藏持续“发烧” 渐成投资理… 2010-10-9

“文房热”遍及大江南北 文房拍场稳… 2010-10-9

和田白玉价格平民化 数百元到过百万… 2010-10-9

苏富比开槌敲响香港秋拍市场 2010-10-8

这个长假,大家过得挺有文化 2010-10-8

当前时区GMT+8 现在时间是 10-18 23:49 清除Cookies联系我们网站统计 TOP
Powered by Sinology & Teched by HDWiKi