边界运算有一个很好的性质。直观上容易看到,“物体的边界没有边界”。比如,三边形的边界是三条边组成的闭合链。生活中我们说 “闭合” 的意思就是没有边界。代数上体现为,连续两次求边界一定是零,
d [ d (BCD) ] = d [ CD – BD + BC ] = d(CD) – d(BD) + d(BC) = (D-C) – (D-B) + (C-B) = 0
现在把剖分后的几何体的所有这样的 “链” 放在一起,它们之间有加减法(合并同类项),可以用系数乘,还可以 “求边界”。这就得到了一个代数对象,叫做这个剖分后的几何体的 “链群”。这个代数对象跟我们开始的剖分方法有关。
在链群中,可以由求边界运算得到的链叫做 “边缘链”,比如,
2 AB + 2 BC + 2 CA = d ( 2 ABC )
说明等式左边这个链是一个边缘链。没有边界的链叫做 “闭链”。边缘链一定是闭链,而闭链不一定是边缘链。庞卡莱发现,“有多少闭链不是边缘链” 这个性质与剖分无关,从而是几何体某种本性的代数体现。怎样代数地描述这个性质? 考虑所有闭链,它们之间的加减,数乘,结果还是闭链,在其中把边缘链等同于0,这样得到的代数对象将不依赖于剖分几何体的方法,庞卡莱叫它 “同调群”。