物理好图 冯·诺伊曼关于希尔伯特空间上对称算子谱理论

来源: 2010-10-01 20:16:08 [博客] [旧帖] [给我悄悄话] 本文已被阅读:

现代数学的基础课程
现代数学的基础课程正在更新。50年代数学系的教学计划,以“高等微积分”、“高等代数”、“高等几何”为主体。时至今日,人们认为光靠这“老三高”已不够用了,应该发展“新三高”,即抽象代数、拓扑学和泛涵分析。现代数学理论是由这三根支柱撑着的。现在,我们来追寻它们形成和发展的历史足迹,并从这一侧面窥视20世纪数学的特征。
一、抽象代数抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念。后来凯利对群作了抽象定义(Cayley,1821~1895)。他在1849年的一项工作里提出抽象群的概念,可惜没有引起反向。“过早的抽象落到了聋子的耳朵里”。直到1878年,凯利又写了抽象群的四篇文章才引起注意。1874年,挪威数学家索甫斯·李(Sophus Lie, 1842~1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群。1882年,英国的冯·戴克(von Dyck,1856~1934)把群论的三个主要来源—方程式论,数论和无限变换群—纳入统一的概念之中,并提出“生成元”概念。20世纪初给出了群的抽象公里系统。
群论的研究在20世纪沿着各个不同方向展开。例如,找出给定阶的有限群的全体。群分解为单群、可解群等问题一直被研究着。有限单群的分类问题在20世纪七、八十年代才获得可能是最终的解决。伯恩赛德(Burnside,1852~1927年)曾提出过许多问题和猜想。如1902年问道一个群G是有限生成且每个元素都是有限阶,G是不是有限群?并猜想每一个非交换的单群是偶数阶的。前者至今尚未解决,后者于1963年解决。
舒尔(Schur,1875~1941)于1901年提出有限群表示的问题。群特征标的研究由弗罗贝尼乌斯首先提出。庞加莱对群论抱有特殊的热情,他说:“群论就是那摒弃其内容而化为纯粹形式的整个数学。”这当然是过分夸大了。
抽象代数的另一部分是域论。1910年施泰尼茨(Steinitz,1871~1928)发表《域的代数理论》,成为抽象代数的重要里程碑。他提出素域的概念,定义了特征数为P的域,证明了每个域可由其素域经添加而得。
环论是抽象代数中较晚成熟的。尽管环和理想的构造在19世纪就可以找到,但抽象理论却完全是20世纪的产物。韦德伯恩(Wedderburn,1882~1948)《论超复数》一文中,研究了线形结合代数,这种代数实际上就是环。环和理想的系统理论由诺特给出。她开始工作时,环和理想的许多结果都已经有了,但当她将这些结果给予适当的确切表述时,就得到了抽象理论。诺特把多项式环的理想论包括在一般理想论之中,为代数整数的理想论和代数整函数的理想论建立了共同的基础。诺特对环和理想作了十分深刻的研究。人们认为这一总结性的工作在1926年臻于完成,因此,可以认为抽象代数形成的时间为1926年。范德瓦尔登根据诺特和阿廷的讲稿,写成《近世代数学》一书,(1955年第四版时改名为《代数学》),其研究对象从研究代数方程根的计算与分布进到研究数字、文字和更一般元素的代数运算规律和各种代数结构。这就发生了质变。由于抽象代数的一般性,它的方法和结果带有基本的性质,因而渗入到各个不同的数学分支。范德瓦尔登的《代数学》至今仍是学习代数的好书。人们从抽象代数奠基人——诺特、阿廷等人灿烂的成果中吸取到了营养,从那以后,代数研究有了长足进展。


分页:[1] [2] [3]


现代数学的基础课程
现代数学的基础课程正在更新。50年代数学系的教学计划,以“高等微积分”、“高等代数”、“高等几何”为主体。时至今日,人们认为光靠这“老三高”已不够用了,应该发展“新三高”,即抽象代数、拓扑学和泛涵分析。现代数学理论是由这三根支柱撑着的。现在,我们来追寻它们形成和发展的历史足迹,并从这一侧面窥视20世纪数学的特征。
一、抽象代数抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念。后来凯利对群作了抽象定义(Cayley,1821~1895)。他在1849年的一项工作里提出抽象群的概念,可惜没有引起反向。“过早的抽象落到了聋子的耳朵里”。直到1878年,凯利又写了抽象群的四篇文章才引起注意。1874年,挪威数学家索甫斯·李(Sophus Lie, 1842~1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群。1882年,英国的冯·戴克(von Dyck,1856~1934)把群论的三个主要来源—方程式论,数论和无限变换群—纳入统一的概念之中,并提出“生成元”概念。20世纪初给出了群的抽象公里系统。
群论的研究在20世纪沿着各个不同方向展开。例如,找出给定阶的有限群的全体。群分解为单群、可解群等问题一直被研究着。有限单群的分类问题在20世纪七、八十年代才获得可能是最终的解决。伯恩赛德(Burnside,1852~1927年)曾提出过许多问题和猜想。如1902年问道一个群G是有限生成且每个元素都是有限阶,G是不是有限群?并猜想每一个非交换的单群是偶数阶的。前者至今尚未解决,后者于1963年解决。
舒尔(Schur,1875~1941)于1901年提出有限群表示的问题。群特征标的研究由弗罗贝尼乌斯首先提出。庞加莱对群论抱有特殊的热情,他说:“群论就是那摒弃其内容而化为纯粹形式的整个数学。”这当然是过分夸大了。
抽象代数的另一部分是域论。1910年施泰尼茨(Steinitz,1871~1928)发表《域的代数理论》,成为抽象代数的重要里程碑。他提出素域的概念,定义了特征数为P的域,证明了每个域可由其素域经添加而得。
环论是抽象代数中较晚成熟的。尽管环和理想的构造在19世纪就可以找到,但抽象理论却完全是20世纪的产物。韦德伯恩(Wedderburn,1882~1948)《论超复数》一文中,研究了线形结合代数,这种代数实际上就是环。环和理想的系统理论由诺特给出。她开始工作时,环和理想的许多结果都已经有了,但当她将这些结果给予适当的确切表述时,就得到了抽象理论。诺特把多项式环的理想论包括在一般理想论之中,为代数整数的理想论和代数整函数的理想论建立了共同的基础。诺特对环和理想作了十分深刻的研究。人们认为这一总结性的工作在1926年臻于完成,因此,可以认为抽象代数形成的时间为1926年。范德瓦尔登根据诺特和阿廷的讲稿,写成《近世代数学》一书,(1955年第四版时改名为《代数学》),其研究对象从研究代数方程根的计算与分布进到研究数字、文字和更一般元素的代数运算规律和各种代数结构。这就发生了质变。由于抽象代数的一般性,它的方法和结果带有基本的性质,因而渗入到各个不同的数学分支。范德瓦尔登的《代数学》至今仍是学习代数的好书。人们从抽象代数奠基人——诺特、阿廷等人灿烂的成果中吸取到了营养,从那以后,代数研究有了长足进展。


分页:[1] [2] [3]


三、泛函分析泛函分析也是在20世纪初发端,于20~30年代完成的。产生泛函分析的背景是变分法、集合论、积分方程的发展。1906年弗雷歇的博士论文,用抽象形式表达了函数空间。空间中每一点是函数,函数的极限可看作空间中点列的极限。这是一个深刻的思想。1907年,施密特(Schmidt,1876~1959)把希尔伯特研究积分方程时使函数等同于傅氏系数集的思想,抽象为一般的 screen.width-333)this.width=screen.width-333" border=0> (screen.width-333)this.width=screen.width-333" border=0>的数列screen.width-333)this.width=screen.width-333" border=0>全体按
通常的线性运算所构成的线性空间),并寻出正交系。希尔伯特空间的名称由此产生。
匈牙利的里兹在1910年,从研究积分方程寻出Lp空间,它不是希尔伯特空间,但可以有范数。在此基础上,波兰数学家巴拿赫提出完整的赋范空间概念(1923),影响很大,后人称之为巴那赫空间。
泛函分析的另一重点是研究函数空间上的线形算子理论。巴拿赫提出了一系列重要的定理,并用于解决积分方程、三角级数等问题,居高临下,使分析学达到新阶段。但是算子理论更光辉的成就属于冯·诺伊曼关于希尔伯特空间上对称算子的研究,并且很幸运地发现,量子力学合用的数学工具,恰恰是这种算子的谱理论。
至此,泛函分析也基本上得到确立。这门学科的特点是:分析的课题、代数的方法、几何的观点,再加上广泛的应用,堪称20世纪一门最具综合性的基础学科。
“新三高”的历史回顾告诉我们,现代数学的基础部分,溯源于19世纪末,奠基于20世纪初,形成于两次世界大战之间。在此基础上,许多新学科相互交织而生长发展。如代数与拓扑结合而有拓扑群,泛函与代数结合而有算子环,拓扑与泛函结合而有线形拓扑空间。非线形分析用代数拓扑作基础,李群和李代数又用泛函为工具,拓扑中发展出同调代数,代数几何又刺激了微分拓扑。“新三高”是现代数学研究前沿的基础。