场(系统)预期外场刺激,质能分布发生变化,以求同化和顺应;实际变化发生,场(系统)质能分布发生变化再次调整,动态过程;
mkt to drop before sep 3 payroll report, and rebalancing after that
one thing at a time, 时空弯曲(质能分布发生变化), painful or pleasant, volatility
第九章感觉器官的功能
当它引发传入神经纤维产生动作电位时,才标志着这一感受器或感觉器官功能的完成。 .... 在无光照时就有相当数量的Na + 通道处于开放状态并有持续的Na + 内流所造成的。 .... 来自前庭器官的传入冲动,除引起运动觉和位置觉外,还可引起各种姿势调节反射和 ...
第九章 感觉器官的功能
人体主要的感觉有视觉、听觉、嗅觉、味觉、躯体感觉(包括皮肤感觉与深部感觉)和内脏感觉等。
第一节 感受器和感觉器官的一般生理
一、感受器、感觉器官的定义和分类
感受器是指分布在体表或组织内部的专门感受机体内、外环境变化的结构或装置。感受细胞连同它们的附属结构,构成各种复杂的感觉器官。感觉器官有眼、耳、前庭、嗅上皮、味蕾等器官,都分布在头部,称为特殊感觉器官。
二、感受器的一般生理特性
(一)感受器的适宜刺激与特异敏感性
各种感受器只对一定性质的刺激高度敏感,这种特性称为特异敏感性。每种感受器都有一定的适宜刺激。适宜刺激必须具有一定的刺激强度才能引起感觉。引起某种感觉所需要的最小刺激强度称为感觉阈。
(二)感受器的换能作用和感受器电位
各种感受器把作用于它们各种形式的刺激的能量转换为传入神经的动作电位,这种能量转换过程称为感受器的换能作用。受刺激时,在感受器细胞或感觉神经末梢引起相应的电位变化,前者称为感受器电位,后者称为启动电位或发生器电位。
感受器电位和发生器电位是一种过渡性慢电位,具有局部兴奋的特征。当它引发传入神经纤维产生动作电位时,才标志着这一感受器或感觉器官功能的完成。
(三)感受器的编码功能
感受器把外界刺激转换成神经动作电位时,不仅仅是发生了能量形式的转换,更重要的是把刺激所包含的环境变化的各种信息也转移到了动作电位的序列之中,这就是感受器的编码功能。感觉的性质决定于传入冲动所到达的高级中枢的部位。
(四)感受器的适应
当刺激作用于感受器时,虽然刺激继续存在,但由其所诱发的传入神经纤维上的冲动频率逐渐下降,这一现象称为感受器的适应。适应是所有感受器的一个功能特点,分为快适应感受器和慢适应感受器。
第二节 视觉器官
人脑所获得的关于周围环境的信息中,大约95%以上来自视觉。
引起视觉的外周感觉器官是眼,它由含有感光细胞的视网膜和作为附属结构的折光系统等部分组成。人眼的适宜刺激是波长为370-740nm的电磁波。
眼球壁分三层,由外向内为:①巩膜--角膜层;②脉络膜层;③视网膜层。眼球内充填了三种折光物质:房水、晶状体及玻璃体。眼内与视觉功能直接有关的结构,是位于眼球中线上的折光系统和位于眼球后部的感光系统,即视网膜。空气与角膜前表面的界面以及角膜、房水、晶状体、玻璃体以及它们之间的界面,构成了眼内的折光系统。视网膜含有对光刺激高度敏感的视杆细胞和视锥细胞。能将外界光刺激所包含的视觉信息转变成电信号,并在视网膜内进行初步处理,最后以视神经纤维动作电位的形式传向大脑。
一、眼的折光功能
(一)与眼的折光成像有关的光学原理
对于人眼和一般光学系统来说,来自6m以外物体的各光点的光线,都可以认为是近于平行的,因而可以在主焦点所在的面上形成物像。
(二)眼折光系统的光学特性
当正常成人的眼处于安静状态而不进行调节时,它的折光系统后主焦点的位置,恰好是视网膜所在的位置。如果来自某物体的光线过弱,或它们在空间和眼内传播时被散射或吸收,光线到达视网膜时其强度已减弱到不足以兴奋感光细胞的程度,就不可能被感知;另外,如果物体过小或离眼的距离过远,则在视网膜上成像小于视网膜的分辨能力的限度时,也不能被感知。
(三)眼内光的折射与简化眼
简化眼模型由一个前后径为20mm的单球面折光体构成,折射率为1.333,外界光线只在由空气进入球形界面时折射一次,该球面的曲率半径为5mm,即节点在球形界面后方5mm的位置,后主焦点正相当于此折光体的后极。这个模型和正常安静时的人眼一样,使平行光线正好聚焦在视网膜上。
视网膜上物像的大小不仅与物体的大小有关,也与物体和眼之间的距离有关。人眼所能看清的最小视网膜像的大小,大致相当于视网膜中央凹处一个视锥细胞的平均直径。
(四)眼折光功能的调节
看远物时,从物体上一点发出的所有进入眼内的光线可认为是平行光线,对正常眼来说,不需任何调节就能成像在视网膜上;看近物(6m以内)时,通过调节,使进入眼内的光线经过较强的折射,成像在视网膜上。
1.晶状体折光能力的调节 当眼看远物时,睫状肌处于松弛状态,这时悬韧带保持一定的紧张度,晶状体受悬韧带的牵引,其形状相对扁平;当看近物时,可反射性地引起睫状肌收缩,导致连接于晶状体囊的悬韧带松弛,晶状体由于其自身的弹性而变凸,曲率半径增加,折光能力增大,从而使物像前移,成像在视网膜上。晶状体的调节能力是有限度的,而且随着年龄的增加,晶状体自身的弹性下降,变形能力逐渐降低。晶状体曲率半径变化的最大能力可用眼能看清物体的最近距离即近点来表示。近点越近,表明晶状体的弹性越好。
2.瞳孔的调节 看近物时,可反射性地引起双侧瞳孔缩小,称为瞳孔近反射或瞳孔调节反射。瞳孔缩小可减少入眼的光线量并减少折光系统的球面像差和色像差,使视网膜成像更为清晰。
3.眼球会聚 当双眼注视近物时,发生两眼球内收及视轴向鼻侧聚拢的现象,称为眼球会聚,也称为辐辏反射。辐辏反射可使双眼看近物时物体成像于两眼视网膜的相称点上,从而产生清晰的视觉而避免复视。
(五)眼的折光能力和调节能力异常
正常眼的折光系统无需进行调节就可使平行光线聚焦于视网膜,因而可以看清远物;经过调节的眼,只要物体离眼的距离不小于近点,也能在视网膜上形成清晰的像,称为正视眼。若眼的折光能力异常,或眼球的形态异常,使平行光线不能在安静未调节的眼的视网膜上成像,则称为非正视眼,包括近视、远视和散光眼。有些人眼静息时折光能力正常,但由于年龄的增长,晶状体弹性减弱,看近物时调节能力减弱,称为老视。
1.近视 是由于眼球的前后径过长(轴性近视)或折光系统的折光能力过强(屈光性近视),故远物发出的平行光线被聚焦在视网膜的前方,而在视网膜上形成模糊的图像。近视眼看近物时,由于近物发出的是辐散光线,故眼不需调节或只作较小程度的调节,就能使光线聚焦在视网膜上。因此,近视眼的近点较正视眼的近。纠正近视可用凹透镜。
2.远视 是由于眼球的前后径过短(轴性远视)或折光系统 的折光能力过弱(屈光性远视),故来自远物的平行光线聚焦在视网膜的后方。远视眼在看远物时,也需经过眼的调节才能使人眼光线聚焦在视网膜上。远视眼看近物时,需作更大程度的调节才能看清物体。故易发生疲劳。纠正远视可用凸透镜。
3.散光 是指眼的角膜表面不呈正球面,即角膜表面不同方位的曲率半径不相等,平行光线进人眼内不能在视网膜上形成焦点,造成视物不清或物像变形。除角膜外,晶状体表面曲率异常也可引起散光。纠正散光可用柱面镜。
二、视网膜的感光功能
视网膜的基本功能是感受光刺激,并将其转换为神经纤维上的电活动。
(一)视网膜的结构特点
视网膜的结构可简化为四层:色素上皮层,具有多种复杂的生化功能及支持光感受器活动的色素屏障作用,并具有对视网膜外层传递来自脉络膜的营养及对光感受器细胞外段脱落的膜盘和代谢产物进行吞噬的作用。感光细胞层,感光细胞分视杆细胞和视锥细胞两种,含有特殊的视色素。视杆和视锥细胞在形态上都可分为四部分,由外向内依次为外段、内段、胞体和终足。外段是视色素集中的部位。两种感光细胞都通过终足与双极细胞发生突触联系,双极细胞再与神经节细胞层中的节细胞联系。
盲点 视网膜由黄斑向鼻侧约3mm处有一直径约1. 5mm、境界清楚的淡红色圆盘状结构,称为视乳头,这是视网膜上视觉神经纤维汇集穿出眼球的部位,该处无光感受细胞,故无视觉感受,在视野中形成生理盲点。但正常时两眼看物,一侧盲点可被对侧视觉补偿。
(二)视网膜的两种感光换能系统
视网膜中存在着两种感光换能系统。一种由视杆细胞和与它们相联系的双极细胞以及神经节细胞等组成,对光的敏感度较高,能在昏暗的环境中感受弱光刺激,但无色觉,分辨率低,称为视杆系统或晚光觉系统;另一种由视锥细胞和与它们相联系的双极细胞及神经节细胞等组成,对光的敏感性较差,在强光下才被激活,有色觉和高分辨能力。这一系统称为视锥系统或昼光觉系统。
(三)视杆细胞的感光换能机制
视紫红质的光化学作用可能是晚光觉的基础。
1.视紫红质的光化学反应及其代谢 视紫红质是一种结合蛋白质,由一分子视蛋白和一分子视黄醛组成。视紫红质在光照时迅速分解为视蛋白和视黄醛,诱发视杆细胞出现感受器电位。在亮处分解的视紫红质,在暗处又可重新合成,这是一个可逆反应,其反应的平衡点决定于光照的强度。
在正常情况下,维生素 A可用于视紫红质的合成与补充。人在暗处视物时,既有视紫红质的分解,又有它的合成;光线愈暗,合成愈超过分解,视网膜中处于合成状态的视紫红质数量愈多,对弱光愈敏感。长期维生素A摄入不足,会影响人在暗光时的视力,引起夜盲症。
2.视杆细胞外段的超微结构和感受器电位的产生 感光细胞外段部分,膜内有大量视盘。视盘中镶嵌着视紫红质。
视杆细胞的静息电位只有-30~-40mV,这是由于外段膜在无光照时就有相当数量的Na + 通道处于开放状态并有持续的Na + 内流所造成的。而内段膜的Na + 泵将Na + 移出膜外,维持膜内外一定的Na + 离子浓度差。当视网膜受光照时,外段膜电位短暂地向超极化的方向变化。
光量子被视紫红质吸收后,视紫红质被分解,激活传递蛋白,进而激活磷酸二酯酶,导致外段部分胞浆中的cGMP分解, cGMP是膜上化学门控式Na + 通道开放的条件,随着膜上cGMP的减少,Na + 通道通透性下降,导致膜电位下降,出现了超极化型感受器电位。感受器电位以电紧张的形式扩播到细胞的终足部分,影响终足处的递质释放。
(四)视锥系统的换能和颇色视觉
大多数脊椎动物都具有三种不同的视锥色素,存在于三种不同的视锥细胞中。视锥细胞功能的重要特点是它具有辨别颜色的能力。三原色学说认为在视网膜上分布有三种不同的视锥细胞,分别含有对红、绿、蓝三种光敏感的视色素;当某一定波长的光线作用于视网膜时,以一定的比例使三种视锥细胞分别产生不同程度的兴奋,这样的信息传至中枢,就产生某一种颜色的感觉。
三、视网膜的信息处理
在视网膜中,只有神经节细胞及少数无长突细胞具有产生动作电位的能力。当光线照射到感光细胞时,引起超极化型感受器电位,以电紧张性扩播到达突触前膜,引起末梢释放递质于突触间隙,从而引起下一级细胞产生慢电位变化。只有当这种慢电位变化传神经节细胞时,经过总和,使节细胞的静息膜电位去极化达到阈电位水平,才能产生动作电位。
视杆与视锥细胞以及双极细胞间的信息传递是由谷氨酸介导的。
发出视神经纤维的神经节细胞,大致可分为三类。一种节细胞的感受野较小,大致相当于一个或一小组双极细胞的感受野,能对视野中物体的形状和表面特征的信息进行编码;另一类节细胞有相当大范围的感受野,其大小相当于几百个双极细胞感受野的总和,这类节细胞携带的是对视野内物体定位的信息;第三种节细胞对移动的物体反应较强。
四、与视觉有关的其他现象
(一)暗适应和明适应
人从亮光处进入暗室时,最初看不清楚任何东西,经过一定时间,视觉敏感度才逐渐增高,恢复在暗处的视力,这种现象称为暗适应。从暗处突然进入亮光处时,最初感到一片耀眼的光亮,不能看清物体,稍待片刻后才能恢复视觉,这种现象称为明适应。
暗适应是人眼在暗处对光的敏感度逐渐提高的过程。可分为两个阶段,第一阶段主要与视锥细胞色素的合成增加有关;第二阶段,与视杆细胞中视紫红质的合成增强有关。
明适应其机制是:在暗处,视杆细胞内积聚视紫红质,进入亮处时受到强光刺激,视紫红质迅速分解,因而产生耀眼的光感,视杆细胞色素迅速分解之后,对光较不敏感的视锥细胞色素才能在亮光环境中感光。
(二)瞳孔对光反射
瞳孔的大小可随光线的强弱而改变,弱光下瞳孔散大,强光下瞳孔缩小,称为瞳孔对光反射瞳孔对光反射的效应是双侧性的,光照一个眼时,两眼瞳孔同时缩小,因此称为互感性对光反射。瞳孔对光反射的中枢在中脑。
(三)视野
当用眼固定注视前方一点时,该眼所能看到的范围,称为视野。用单眼注视视野中某一点时,此点的像正好落在视网膜黄斑的中央凹处,连接这两点的假想线即称为视轴。在同一光照条件下,白色视野最大,其次为一黄蓝色,再次为红色,绿色视野最小。视野的大小可能与各类感光细胞在视网膜中的分布范围有关。由于面部结构(鼻和额)阻挡视线,颞侧和下方视野较大,鼻侧与上方视野较小。
(四)双眼视觉和立体视觉
人的双眼都在面部前方,两眼视野有很大一部分重叠,称为双眼视觉。双眼视物时,由于从物体同一部分来的光线成像于两眼视网膜的相称点上,可以弥补单眼视野中的盲区缺损,扩大视野,并可产生立体视觉。
第三节 听觉器官
听觉的外周感受器官是耳,由外耳、中耳和内耳的耳蜗组成。由声源振动引起空气产生的疏密波,通过外耳和中耳组成的传音系统传递到内耳,经内耳的换能作用将声波的机械能转变为听神经纤维上的神经冲动,后者传送到大脑皮层听觉中枢,产生听觉。
一、人耳的听阈和听域
人耳能感受的振动频率范围为20~20000Hz,对于每一种频率的声波,都有一个刚能引起听觉的最小强度,称为听阈。当强度在听阈以上增加到某一限度时,还会引起鼓膜的疼痛感觉,这个限度称为最大可听阈。
二、外耳和中耳的功能
(一)外耳的功能
外耳由耳廓和外耳道组成。耳廓的形状有利于收集声波,有采音作用;耳廓还可帮助判断声源的方向。外耳道是声波传导的通路。
(二)中耳的功能
中耳由鼓膜、听骨链、鼓室和咽鼓管等结构组成,能将空气中的声波振动能量高效地传递到内耳淋巴液。
鼓膜具有较好的频率响应和较小的失真度。听骨链由锤骨、砧骨及蹬骨依次连接而成,形成固定角度的杠杆。声波由鼓膜经听骨链到达卵圆窗膜时,其振动的压强增大,而振幅稍减小,这就是中耳的增压作用。原因是:①鼓膜与卵圆窗膜的面积之比为 17.2:1。②听骨链杠杆的长臂与短臂之比为1.3:1。在整个中耳传递过程中的增压效应22.4倍。
(三)声波传入内耳的途径
声音是通过空气传导与骨传导两种途径传入内耳的。
1.气传导 声波经外耳道引起鼓膜振动,再经听骨链和卵圆窗膜进入耳蜗,这一条途径称为气传导,是声波传导的主要途径。
2.骨传导 声波可引起颅骨的振动,再引起位于颞骨骨质中的耳蜗内淋巴的振动,这种传导途径称为骨传导。
三、内耳的功能
内耳又称迷路,由耳蜗和前庭器官组成。耳蜗的主要作用有:①传音功能;②感音功能,即将螺旋器受到的声能转化为蜗神经的冲动。前庭器官则与平衡感觉有关。
(一)耳蜗的结构
耳蜗内有两个分界膜,一为斜行的前庭膜,一为横行的基底膜,此二膜将管道分为三个腔,分别称为前庭阶、鼓阶和蜗管。前庭阶在耳蜗底部与卵圆窗膜相接,内允外淋巴;鼓阶在耳蜗底部与圆窗膜相接,也充满外淋巴,两者在耳蜗顶部相通。蜗管是一个充满内淋巴的盲管。基底膜上有声音感受器—螺旋器(也称柯蒂器)。蜗管近蜗轴有内毛细胞,其外侧有外毛细胞。毛细胞的顶部有上百条听毛,较长的一些纤毛埋植于盖膜中。盖膜在内侧连耳蜗轴,外侧则游离在内淋巴中。毛细胞的顶部与内淋巴接触,其底部则与外淋巴相接触。毛细胞的底部有丰富的听神经末梢。
(二)基底膜的振动和行波理论
当声波振动通过听骨链到达卵圆窗膜,引起内淋巴的振动。内淋巴的振动从基底膜的底
部开始,按照行波原理传导耳蜗的顶部。声波频率愈高,行波传播愈近,最大振幅出现的部位愈靠近卵圆窗处;声音频率愈低,行波传播的距离愈远,最大振幅出现的部位愈靠近基底膜顶部。由于每一种振动频率在基底膜上都有一个特定的行波传播范围和最大振幅区,与该区域有关的毛细胞和听神经纤维就会受到最大的刺激,来自基底膜不同区域的听神经纤维的冲动传到听觉中枢的不同部位,就可引起不同音调的感觉,这就是耳蜗对声音频率初步分析的基本原理。外毛细胞顶端的听毛有些埋植于盖膜的胶状物中,有的则与盖膜的下面相接触;由于基底膜与盖膜的附着点不在同一个轴上,故当行波引起基底膜振动时,盖膜与基底膜便各自沿着不同的轴而上、下移动,于是两膜之间便发生交错的移行运动,使听毛受到一个剪切力的作用而弯曲,引起毛细胞兴奋,并将机械能转变为生物电变化。
(三)耳蜗的生物电现象
在耳蜗未受刺激时,如果以鼓阶外淋巴为参考零电位,那么蜗管内淋巴中的电位为+80mV左右,称为耳蜗内电位,又称内淋巴电位。在静息情况下,毛细胞膜内电位为-70~-80mV,由于毛细胞顶端的浸浴液为内淋巴,因此该处毛细胞膜内外的电位差可达160mV左右。而毛细胞周围的浸浴液为外淋巴,该处膜内外的电位差只有80mV左右。内淋巴中正电位的产生和维持,与蜗管外侧壁的血管纹Na + -K + 依赖性ATP酶有关。内淋巴中较高的K + 浓度与维持毛细胞对机械性刺激的敏感性有关。
当耳蜗受到声音刺激时,在耳蜗及其附近结构可记录到频率和幅度与作用于耳蜗的声波振动完全一致的电变化,称为微音器电位。它是多个毛细胞在接受声音刺激时所产生的感受器电位的复合表现。
四、听神经动作电位
复合动作电位的振幅取决于声音强度、发生兴奋的纤维数目及各纤维放电的同步化程度。
单一听神经纤维的动作电位,它是一种“全或无”式的反应,安静时有自发放电,在有声音刺激时放电增加。单一听神经纤维对某一特定频率的纯音只需很小的刺激强度便可发生兴奋,这个频率称为特征频率或最佳频率。随着声音强度的增加,能引起单一听神经纤维放电的频率范围增大。每一根纤维最佳反应频率的高低,决定于该纤维末梢在基底膜上的分布位置,而这-位置正好是该频率的声音所引起的最大振幅行波的所在位置。
第四节前庭器官
正常姿势的维持,依赖于前庭器官、视觉器官和本体感觉感受器的协同活动。前庭器官由内耳中的三个半规管以及椭圆囊和球囊组成,是人体对自身运动状态和头部在空间位置的感受器,在保持身体的平衡中起重要的作用。
一、前庭器官的感受装置和适宜刺激
前庭器官的感受细胞称为毛细胞,有两种纤毛,其中有一根最长,位于细胞顶端的一侧边缘处,称为动纤毛;其余的纤毛较短,数量较多,称为静纤毛。当纤毛都处于自然状态时,细胞膜的静息电位约 -80mV;同时,与毛细胞相连的神经纤维上有一定频率的持续放电。如果静纤毛朝向动纤毛的方向弯曲,细胞膜电位值就减小(去极化),达到一定阈值时,支配毛细胞的传入神经冲动发放的频率增加,表现为兴奋效应;当动纤毛朝向静纤毛的方向弯曲时,则毛细胞膜电位值增加(超极化),同时传入冲动减少,表现为抑制效应。在正常情况下,机体的运动状态和头部在空间位置的改变都能以特定的方式改变毛细胞纤毛弯曲的方向,使相应神经纤维的放电频率发生改变,这些信息传到中枢后,能引起特殊的运动觉和位置觉,并出现各种躯体和内脏功能的反射性变化。
人体两侧内耳各有三个相互垂直的半规管,分别代表空间的三个方向。当头向前倾30度时,外侧半规管与地面平行,其余两个半规管与地而垂直。每个半规管与椭圆囊连接处都有一个膨大的部分,称为壶腹,壶腹内有一块隆起壶腹嵴,其中有一排毛细胞,面对管腔。 半规管壶腹嵴的适宜刺激是角加速度运动。
椭圆囊和球囊的适宜刺激是直线加速度运动。在这两个囊斑的平面上,每个毛细胞的排列方向都不完个相同。
二、前庭反应和眼震颤
来自前庭器官的传入冲动,除引起运动觉和位置觉外,还可引起各种姿势调节反射和自主性神经功能的改变。如果前庭器官受到过强或过长的刺激,或刺激未过量而前庭功能过敏时,常会引起恶心、呕吐、眩晕、皮肤苍白等现象,称为前庭自主神经反应。
前庭反应中最特殊的是当躯体作旋转运动时产生角加速度引起的眼球运动,称为眼震颤。眼震颤慢动相的方向与旋转加速度的方向相反,是由于对前庭器官的刺激而引起的;而快动相的运动方向与旋转加速度方向一致,是中枢矫正性运动。