古典力學的一個基本原理是:任何一個物體的邉佣伎煽醋魇且粋

http://zh.wikipedia.org/zh-tw/%E5%B9%BF%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA

偏离力,非惯性力

引力太小,局部看,所以两种运动(及其对应的两种质量)分不太清,广相转向研究周围的时空变化,生产关系


愛因斯坦解釋廣義相對論的手稿扉頁1905年愛因斯坦發表狹義相對論後,他開始著眼於如何將重力納入狹義相對論框架的思考。以一個處在自由落體狀態的觀察者的理想實驗為出發點,他從1907年開始了長達八年的對重力的相對性理論的探索。在歷經多次彎路和錯誤之後,他於1915年11月在普魯士科學院上作了發言,其內容正是著名的愛因斯坦重力場方程式。這個方程式描述了處於時空中的物質是如何影響其周圍的時空幾何,並成為了愛因斯坦的廣義相對論的核心[1]。

愛因斯坦的重力場方程式是一個二階非線性偏微分方程式組,數學上想要求得方程式的解是一件非常困難的事。愛因斯坦哂昧撕芏嘟?品椒ǎ瑥闹亓?龇匠淌降贸隽撕芏嘧畛醯念A言。不過很快天才的天體物理學家卡爾·史瓦西就在1916年得到了重力場方程式的第一個非平庸精確解——史瓦西度規,這個解是研究星體重力塌縮的最終階段,即黑洞的理論基礎。在同一年,將史瓦西幾何擴展到帶有電荷的質量的研究工作也開始進行,其最終結果就是萊斯納-諾德斯特洛姆度規,其對應的是帶電荷的靜態黑洞[2]。1917年愛因斯坦將廣義相對論理論應用於整個宇宙,開創了相對論宇宙學的研究領域。考慮到同時期的宇宙學研究中靜態宇宙的學說仍被廣為接受,愛因斯坦在他的重力場方程式中添加了一個新的常數,這被稱作宇宙常數項,以求得和當時的「觀測」相符合[3]。然而到了1929年,哈柏等人的觀測表明我們的宇宙處在膨脹狀態,而相應的膨脹宇宙解早在1922年就已經由亞歷山大·弗里德曼從他的弗里德曼方程式(同樣由愛因斯坦場方程式推出)得到,這個膨脹宇宙解不需要任何附加的宇宙常數項。比利時牧師勒梅特應用這些解構造了宇宙大霹靂的最早模型,模型預言宇宙是從一個高溫高緻密狀態演化來的[4]。愛因斯坦其後承認添加宇宙常數項是他一生中犯下的最大錯誤[5]。

在那個時代,廣義相對論與其他物理理論相比仍保持了一種神秘感。由於它和狹義相對論相融洽,並能夠解釋很多牛頓重力無法解釋的現象,顯然它要優於牛頓理論。愛因斯坦本人在1915年證明了廣義相對論是如何解釋水星軌道的反常近日點進動的現象,其過程不需要任何附加參數(所謂「敷衍因子」)[6]。另一個著名的實驗驗證是由亞瑟·愛丁頓爵士率領的探險隊在非洲的普林西比島觀測到的日食時的光線在太陽重力場中的偏折[7],其偏折角度和廣義相對論的預言完全相符(是牛頓理論預言的偏折角的兩倍),這一發現隨後被全球報紙競相報導,一時間使愛因斯坦的理論名聲赫赫[8]。但是直到1960年至1975年間,廣義相對論才真正進入了理論物理和天體物理主流研究的視野,這一時期被稱作廣義相對論的黃金時代。物理學家逐漸理解了黑洞的概念,並能夠通過天體物理學的性質從類星體中識別黑洞[9]。在太陽系內能夠進行的更精確的廣義相對論的實驗驗證進一步展示了廣義相對論非凡的預言能力[10],而相對論宇宙學的預言也同樣經受住了實驗觀測的檢驗[11]。

[編輯] 從古典力學到廣義相對論
理解廣義相對論的最佳方法之一是從古典力學出發比較兩者的異同點:這種方法首先需要認識到古典力學和牛頓重力也可以用幾何語言來描述,而將這種幾何描述和狹義相對論的基本原理放在一起對理解廣義相對論具有啟發性作用[12]。

[編輯] 牛頓重力的幾何學
古典力學的一個基本原理是:任何一個物體的邉佣伎煽醋魇且粋

请您先登陆,再发跟帖!