最普遍的对称性是时空几何对称性和量子力学的代数对称性
最普遍的对称性是时空几何对称性和量子力学的代数对称性。所有的物质都在时空中运动,在不同时间和地点重复相同的实验反复证明了,对一个与周围物质切断了相互作用的孤立的系统,时空坐标原点的选取和坐标轴方向的选取都不会影响这一系统的运动规律。时空表现为均匀和各向同性的。坐标系原点的平移和坐标轴的转动都是对称变换,它们构成非齐次洛伦兹群,又称庞加莱群。在庞加莱群中,与平移生成元对应的物理量为能量动量矢量,与转动生成元对应的物理量为角动量。能量、动量守恒以及角动量守恒与时空均匀性和各向同性直接相关,它不依赖于物质的具体内容。不论是微观的还是宏观的,是粒子还是场,所有在均匀和各向同性的时空中运动的物质都必须遵守能量、动量和角动量的守恒律。
一个自由运动的微观粒子,不受其他粒子相互作用的影响,它的内部性质由与对称群相联系的守恒量来描写,而与时空相关的特性,则由对称群的不变量来描写。粒子的能量、动量和角动量虽然都是守恒量,但它们不是洛伦兹群的不变量,当坐标系进行洛伦兹变换时,在相对作匀速直线运动的不同坐标系上观测粒子的能量、动量和角动量会得到不同的数值。但是粒子的质量和它的总自旋则是洛伦兹群的不变量。只有用不变量才能准确地对微观粒子和时空相关的性质进行分类。
量子系统的状态由复数波函数来描写,它的运动服从海森伯方程或薛定谔方程。对量子力学的运动规律,通过复数共轭可将粒子和反粒子联系起来,形成电荷共轭的变换,但它不是一个严格的对称变换,在弱相互作用中,它遭到了破坏(见C 宇称)。
最重要的量子力学代数对称变换是多个相同粒子之间的交换。这个对称变换群是分立的置换群。交换的对称性与所有已知的粒子分为玻色子和费密子两大类这一实验事实密切相关。玻色子的波函数在粒子交换下是完全对称的,具有整数自旋,满足玻色-爱因斯坦统计;而费密子的波函数在粒子变换下是全反对称的,具有半整数自旋,满足费密-狄喇克统计。
量子力学状态常常显示几何的特征形态,例如在库仑场中运动的电子具有球谐函数的对称性。处于同一量子态的系统是全同的。两个或多个全同的子系统(如原子)构成一个总系统(如分子)时,交换的对称性使得总系统的量子态成为全对称的或是全反对称的。这种全同性的效应是各种多体现象得以发生的重要原因。例如只有电子的全同性和它的波函数的全反对称性才能解释元素周期表的排列,而4He的全同性和它波函数的全对称性则是超流动性发生的根本原因(见全同粒子)。
除了对每一种物质都适用的普遍对称性外,一些特定的物质形态有它自身独有的对称性。例如晶体的对称性,对不同的晶体是不同的。又如夸克(见强子结构)有SU(3)色群的对称性,而轻子就没有【见SU(3)对称性】。现在已经知道的对称性都列在表1中,其中给出了对称群和相应的守恒量。