1.齐次线性方程的解可以认为是物体按照方程所体现的规律运动时的运动路径,且是在零初始条件下.2.非齐次的解那就是齐次的解加上初始

以二阶方程为例来说明线性方程解的结构
悬赏分:180 - 解决时间:2008-8-5 19:06
以二阶方程为例来说明线性方程解的结构,主要是两个方面:

(1)齐次线性方程解的结构

(2)线性非齐次方程解的结构,主要是与对应齐次线性方程的解有什么关系。
问题补充:要拿出方程来.....不要书上的.....分绝对够高了.....
没有人来我就把分给自己小号

提问者: 184677748 - 二级最佳答案我们以二阶方程为例来说明线性方程解的结构,当然这些结论也适合于高阶线性微分方程。
二阶线性方程的一般形式为

其中y",y',y都是一次的,否则称为二阶非线性方程。
线性齐次方程解的结构
二阶线性齐次方程的形式为:

定理:如果函数均是方程的解,那末也是该方程的解,其中C1,C2为任意常数。
线性齐次方程的这一性质,又称为解的叠和性。
问题:我们所求得的解是不是方程的通解呢?
一般来说,这是不一定的,那么什么情况下它才是方程的通解呢?为此我们由引出了两个概念:线性相关与线性独立。
定义:设是定义在区间I的两个函数,如果,那末称此两函数在区间I线性相关,否则,即之比不恒等于一个常数,那末称此两函数线性独立或线性无关。
为此我们有了关于线性齐次方程特解的定理。
定理:如果是二阶线线性齐次方程的任意两个线性独立的特解,那末就是该方程的通解,其中C1,C2为任意常数。
线性非齐次方程解的结构
二阶线性非齐次方程的形式为:

对于一阶线性非齐次方程我们知道,线性非齐次方程的通解等于它的一个特解与对应的齐次方程通解之和。那末这个结论对高阶线性非齐次方程适合吗?
答案是肯定的。为此我们有下面的定理。
定理:设y是二阶线性非齐次方程的任一特解,Y是与该方程对应的齐次线性方程的通解,那末 y=y+Y 就是方程的通解。
我们为了以后的解题方便,又给出了一个定理,如下:
定理:设有线性非齐次方程.如果分别是方程
与方程
的解,那末就是原方程的解。

2回答者: seepath - 四级 2008-7-12 15:35

我来评论>> 相关内容
• 三元线性方程组AX=B有两个解B1 B2 且r(A)=2,则AX=B的全部解 (结构解)为X= ? 2008-5-28
• 已知二阶齐次线性方程的2个不同的特解,则一定能够写出它的通解。 2008-12-16
• 关于微分方程 已知某二阶线性微分方程三解为X ,X+1`,eX+X求其通解及原方程 2009-12-24
• 二阶常系数非线性微分方程 y''+a × (y')^2+b=0 怎么解? 2007-12-19
• y=1,y=x,y=x^2(平方)是二阶非齐次线性微分方和的解,求这个方程的通通。 2009-4-29
更多关于"二阶运动benzhi"的问题>>
查看同主题问题: 线性 方程 结构
其他回答 共 7 条
无语,自己可以去找《微积分》来看

回答者: woshi_piaozi - 二级 2008-7-10 19:05

太简单了 懒得说 !!!

回答者: 200631060 - 二级 2008-7-11 17:58

应该是看《线性代数》吧!

回答者: yidongyue321 - 四级 2008-7-12 13:48

1.齐次线性方程的解可以认为是物体按照方程所体现的规律运动时的运动路径,且是在零初始条件下.
2.非齐次的解那就是齐次的解加上初始条件或初始运动,是初始运动对物体影响后的运动结果.
3.解的相加或合成是说各个基本解的不同组合仍然符合运动规律.这个原因是因为方程是线性的.
4.基本解可以认为是物体运动的最本质的规律.

请您先登陆,再发跟帖!