黎曼几何的切入口
一般从直观的角度来说,要研究线的弯曲起码要在二维空间才能进行。(如果是非平面曲线还得在三维空间里)同样面的弯曲只能在三维空间里才能直观地研究。即便如此,三维空间的弯曲还是直观不起来了。因为四维以上的空间无法用图表示。当然用相应的类比还是可以进行研究的。
要研究N维空间的弯曲是否至少要在N+1维空间里才能进行呢?
极而言之,现在假设有一个最高是N维的空间,如果比N维的维数少的空间的弯曲情况还可以在N维空间里研究的话,那么N维空间的弯曲,由于没有更高维的空间,如何研究呢?
在N维空间里研究N维空间自身的弯曲看来只能是另辟蹊径了。
如果不借助更高维空间,仅通过空间自身的“努力”来研究弯曲的话,那你相对于黎曼几何的殿堂已经可以说是登堂入室了。
此话怎讲。
众所周知,在欧几里德空间里,一个矢量作平行移动“兜”一个圈回到原处,这个矢量的大小和方向都不会发生变化。这因为欧几里德空间是平直空间。
那么在一个弯曲的空间里对矢量这样作是否会发生某种变化呢?回答是肯定的!不仅如此,还可以根据其大小和方向变化的多少来判断空间弯曲的程度和特性。换句话说,我们只要将某个矢量在N维空间里“兜”个圈,研究矢量的变化就可知晓此N维空间的弯曲的情况啦。看!研究N维空间的弯曲不必借助N+1维空间。
关于矢量大小和方向的变化先分开来讨论比较方便。
关于矢量方向的变化至少和一个叫“仿射联络”的量有关。如该空间是平直的,那么“仿射联络”量必为零。如果该空间的“仿射联络”不为零,则该空间就是弯曲的。不过,大家可要当心!“仿射联络”为零,该空间可不一定是平直的。因为“仿射联络”量不是一个张量。一个“仿射联络”不为零的空间可以通过坐标变换使它在空间的某个“局部”为零。
关于矢量大小的变化则和一个叫度规张量的量有关。一般来说,在弯曲空间里矢量在平移时起码大小是变化的。这个度规张量可以反映空间的种种特性。当这个量与坐标和时间有关时,那么该空间不仅是弯曲的而且是“蠕动”的。
“仿射联络”与度规张量似乎都能反映空间的弯曲,那么它们之间有什么关系呢?研究表明,度规张量可以完全确定“仿射联络”。但是“仿射联络”则不一定完全确定度规张量。为此,我们把度规张量看成是最基本的,并假设“仿射联络”总可以由度规张量计算出来。
在研究矢量平移的变化过程中发现这种变化还和平移的路径有关,由于路径的不同又会引起额外的变化。(事情变得更为复杂了)这个额外的变化与一个叫曲率张量的量有关。曲率张量是唯一可以由度规张量的二阶导数的线性组合而构成的张量。此外如果该空间过分“七翘八扭”则还得考虑“挠率张量”等等。
关于曲率张量按理应该大书特书一番。由于牵涉面过于复杂,只能点到为止。通过对牛顿引力方程的合理推广、广义相对论及对曲率张量的特定组合,爱因斯坦得出了一个有名的“上帝的方程式”——爱因斯坦方程!
黎曼几何竟和广义相对论挂上了钩。
爱因斯坦方程就是引力场方程。于是一切就顺理成章了,爱因斯坦方程决定度规张量(物质决定度规张量)——度规张量决定曲率张量——曲率张量决定空间弯曲——度规张量决定仿射联络——仿射联络决定物质运动——……
顺便提一下仿射联络的“局部”为零的参考系相当于引力场中自由降落的升降机。挠率张量的物理效应并不显著,在这方面已经有人做过点“文章”了,看来意义不大。
无论“维相”还是“反相”要想绕过黎曼几何几乎是不可能的。
在欧几里德空间里,一个矢量作平行移动“兜”一个圈回到原处,这个矢量的大小和方向都不会发生变化
所有跟帖:
•
一个弯曲的空间里对矢量这样作,可以根据其大小和方向变化的多少来判断空间弯曲的程度和特性
-marketreflections-
♂
(351 bytes)
()
12/03/2009 postreply
08:30:52
•
戴伍圣 群论
-marketreflections-
♂
(178 bytes)
()
12/03/2009 postreply
09:01:17
•
引力场是暗能量和星体相互作用的产物
-marketreflections-
♂
(1106 bytes)
()
12/03/2009 postreply
10:13:46
•
人类对引力传递方式的认识历程
-marketreflections-
♂
(8144 bytes)
()
12/03/2009 postreply
10:22:29