波动方程具有描述驻波的解, 这些解和原子的定态联系
他的波动方程具有描述驻波的解,他并把这些解和原子的定态联系起来,这些驻波解匀有按 而随时间变化的特征,可能的频率是一组分立的值,比如说为 ,而第n 个定态的能量就由 给出。”。
频点形状出来了,振动相对稳定了
但是与太阳系不同的是,现在有了两种不同电性的物质 (粒子) ,这两种不同电性粒子的运动会产生电磁波的辐射。也就是说这样一个系统中实际上可能产生的不只是一个类似万有引力的库仑力,而是还会产生与引力完全不同性质的电磁波的力。这是所有问题的核心。所以我们不能认同库珀所说的,玻尔已经得到了与实验结果完全相符合的明确的理论,这个问题上表现出来的量子力学理论与实验结果的一致性,已经可以完全说明了量子力学理论的合理性。在这一点上现代物理学家比同时代的应用物理学家的认识前进了一步。在量子物理学 [2]中指出:“玻尔的量子条件有一种专门定出来的性质,很难被认为是令人满意的,在薛定谔发表论文的时候,已经清楚,除虽然玻尔的理论确实解释了一些观察到的事实,但也有这一定的缺点和完全失败之处,因此产生新概念的时机已经成熟。薛定谔的巨大贡献在于证明了:如果认真地采用物质的波动图象那就会有一个系统的和自然的方式得到的‘量子化’。他指出在适当的条件下,他的波动方程具有描述驻波的解,他并把这些解和原子的定态联系起来,这些驻波解匀有按 而随时间变化的特征,可能的频率是一组分立的值,比如说为 ,而第n 个定态的能量就由 给出。”。
